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Data integration and predictive modeling methods
for multi-omics datasets†

Minseung Kim ab and Ilias Tagkopoulos *ab

Translating data to knowledge and actionable insights is the Holy Grail for many scientific fields,

including biology. The unprecedented massive and heterogeneous data have created as many

challenges to store, process and analyze as the opportunities and promises they hold. Here, we provide

an overview of these opportunities and challenges in multi-omics predictive analytics.

Introduction

Machine learning and multi-omics technologies revolutionize
the way we acquire and process data. At their core, machine
learning (ML) algorithms dissect the data to learn their structure
and associations within, often without the need of specific
knowledge on processes and models that generated them.1

The strength of ML techniques is proportional to the size and
quality of the data amassed. At the same time, sequencing and
molecular technologies can generate a vast amount of high
quality data in an inexpensive, reproducible way and hence they
allow an unprecedented system-level view of any organism.2

These datasets, which can come from a variety of sources,
equipment and experimental settings, are in their majority
not ready to serve as training sets to computational models
and machine learning methods, as they have not been created
with that function in mind. As such, there is a clear need for
methods that process, normalize, integrate and transform
the plethora of heterogeneous multi-omics data to cohesive
compendia that can be used as a training grounds for further
analysis and learning.3,4

Here, we review the current methods for preprocessing and
analysis of heterogeneous omics data for various problems in
computational biology. In line with previous reviews on similar
topics in personalized medicine,5 genetics,6 and bio-imaging
analysis,7 we extend these efforts to the description of multiple
omics-types and to the characterization of the practical aspects

of high-throughput technologies to profile such omics-types.
We summarize the data universe for the most data-rich organ-
isms across the five kingdoms and provide an overview of
processing procedures for genome-wide raw data profiled from
major high-throughput technologies. We then explore methods
for integrating heterogeneous omics data and general princi-
ples and applications of quality assessment (QA) and quality
control (QC) of genome-wide data, as well as the appli-
cation of machine learning methods to these datasets across
a wide spectrum of applications.

The general workflow of multi-omics integration and analysis
consists of three major steps (Fig. 1). First, omics data are
collected and processed to interrogate genome-wide molecular
measurements from isolates. Then, the processed omics data
are combined at different levels of depth (prior knowledge
and degrees of coverage) and widths (across heterogeneous
omics-types) after the quality assurance procedure is performed.
On the integrated compendia, machine-learning analytics are
applied to learn complex patterns, finally guiding new experi-
mentation based on the model results. This high-level abstrac-
tion of the analytic pipeline for predictive biology is applicable
to diverse domains including biomedicine,5,8 biotechnology,9

agriculture,10,11 and nutritional science.12,13 In the sections
below, we review the types of data, preprocessing pipelines,
predictive models and applications of omics data.

Omics data types
Overview

There are four main omics-types (genome, transcriptome,
proteome, and metabolome) where each represents all molecules
of a specific type (DNA, RNA, protein, and metabolite, respectively)
within a cell or a group of cells. Here we describe each of the

a Department of Computer Science, University of California, Davis,

California 95616, USA
b Genome Center, University of California, Davis, California 95616, USA.

E-mail: itagkopoulos@ucdavis.edu

† Electronic supplementary information (ESI) available. See DOI: 10.1039/
c7mo00051k

Received 4th October 2017,
Accepted 30th October 2017

DOI: 10.1039/c7mo00051k

rsc.li/molomics

Molecular
Omics

REVIEW

Pu
bl

is
he

d 
on

 2
0 

D
ec

em
be

r 
20

17
. D

ow
nl

oa
de

d 
on

 4
/2

0/
20

19
 1

0:
27

:5
9 

A
M

. 

View Article Online
View Journal  | View Issue

http://orcid.org/0000-0003-1646-0098
http://orcid.org/0000-0003-1104-7616
http://crossmark.crossref.org/dialog/?doi=10.1039/c7mo00051k&domain=pdf&date_stamp=2017-12-04
http://rsc.li/molomics
http://dx.doi.org/10.1039/c7mo00051k
https://pubs.rsc.org/en/journals/journal/MO
https://pubs.rsc.org/en/journals/journal/MO?issueid=MO014001


This journal is©The Royal Society of Chemistry 2018 Mol. Omics, 2018, 14, 8--25 | 9

four omics-types and characterize many practical aspects of
high-throughput technologies to interrogate such information
at the genome scale (Table 1).

Genome

A genome is the complete information of the DNA of an
organism. A primary technique to interrogate such information
is whole-genome sequencing (DNA-Seq), which can be used for
novel assembly and for the discovery of genetic variants for a
re-sequenced organism. The quantity and quality of the outcome
depends on the read depth (i.e. how many reads on average are
mapped on the reference genome at a single base position) and it
has been extensively reviewed in the past.14 Two major databases
collecting publicly available genomic data are the Sequence Read
Archive (SRA), which stores raw sequence data,15 and the Gene
Expression Omnibus (GEO), which stores processed genomic data
with characterization metadata.16 The NCBI dbGaP (The database
of Genotypes and Phenotypes) is a public repository for
individual-level genotype, sequence data, and phenotype with
controlled access.17

Transcriptome

The transcriptome is the set of all messenger RNA molecules
in a cell or a population of cells. The most common high-
throughput techniques for transcriptional profiling are micro-
arrays and more recently RNA-Seq. Raw data can be used for
quantification of mRNAs, novel transcript identification as well
as discovery of novel splicing sites.18 The coverage of genes that
can be profiled by RNA-Seq experiments varies from 80% to
99% of the total count depending on the experimental setup.19

Past reviews have summarized the quality of RNA-Seq data.20

Most publicly available transcriptional profiling datasets can be
found in the GEO database,16 ArrayExpress21 and SRA.15

Proteome

The proteome is the entire universe of proteins that can be
expressed by a cell. Mass-spectrometry (MS) is the main platform
used for large-scale proteomic profiling. The output processed
from mass-spectrometry can be used for quantification of
proteins and PTMs (post-translational modifications), as well
as for identifying novel proteins.22,23 Due to technological

Fig. 1 An end-to-end pipeline for multi-omics data. The three major steps involved are data acquisition, multi-omics integration and predictive
modeling. For omics profiling and data processing (cyan icons), samples are collected and profiled using high-throughput technologies. The raw data are
then processed, interpreted and translated to knowledge. For QA/QC and multi-omics integration (green icons), the quality of integrated data is ensured
by performing normalization, imputation, and quality evaluation. Then, the genome-wide data across different omics-types are integrated into one or
more databases. Finally, during predictive modeling and analysis (blue icons), analytics are applied after data have been transformed (pre-processed) to
be suitable for training models. Trained models are then evaluated and interrogated to guide further experimentation, either as validation or as hypothesis
generation steps for the next iteration of the omics cycle. This pipeline is applied with small variations in a variety of industries, including agriculture, food
and nutrition, biotechnology and medicine.
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limitations, not all proteins can be detected. The coverage of
detectable proteins ranges from 55% to 94% of the total
proteome, depending on the specific organism.24,25 The quality
of MS-produced proteome data has been reviewed in ref. 26.
The three major repositories that store proteome profiling
results are PRIDE,27 ProteomeXchange28 and ProteomicsDB.24

Metabolome

The metabolome is the complete set of small-molecules present
within an organism. The typical mass of metabolites in a cell spans
from 50 to 1500 daltons (Da). Like the proteome, mass-spectrometry
(MS) is a major class of technologies to interrogate genome-wide
quantification of metabolites or to discover novel metabolites.29

Detection coverage is still limited to below 20% because of various
technological limitations.30 A critical review about quality of
MS-produced metabolome data can be found in ref. 31. Compared
to other omics-types, the available databases collecting metabolome
experiments are scarce. MetaboLights32 is a notable resource,
although still with limited data (189 studies so far).

Interactome

The interactome is a map of molecular dependencies in a cell.
That is, the interactome can be considered as a collection of
genome-wide interplays across genome, transcriptome, proteome,
and metabolome. There are many different types of interactions
depending on the type of interacting molecules, with protein–
protein interaction (PPI) being one of the main ones. PPIs are
usually identified by yeast-two hybrid screening33 and more
recently by sequencing technology,34 although the coverage is
believed to be limited to around 34–50%.35 Another interaction
type is between a protein and DNA, which is typically profiled
by ChIP-Seq, and more recently, by ChIP-Exo.36–38 The resulting
information can be used for revealing the gene regulatory or
histone modification maps. The public repositories curating

molecular interactions include STRING39 and BioGRID.40 More
extensive review on the resources is in ref. 41.

Multi-omics data availability

The estimated availability of multi-omics data across five
different kingdoms is shown in Table 2. As expected, genomic
information is the most abundant of all omics-types (a total of
891k profiles for the 15 most popular organisms), followed by
transcriptional profiling. Interestingly, the metabolome layer is
more quantitatively explored than the proteome layer, which
might reflect the lower profiling cost as reported in Table 1.
As expected, Homo sapiens was the organism explored with the
largest number of profiles across all omics-types except the
fluxome layer, which was second ranked followed by E. coli.
The number of available flux profiles is estimated to be more
abundant in single cell organisms, due to their importance in
biotechnology and metabolic engineering.

Omics profiling and data processing

In this section, we provide a high-level overview of procedures to
process high-throughput raw-data produced from different plat-
forms (Fig. 2). We focus on three major groups of high-throughput
technologies (microarray, next generation sequencing, and mass-
spectrometry). For more information about each platform, refer to
ref. 42 and 43 for microarray, ref. 44 for sequencing technology,
and ref. 45 and 46 for mass-spectrometry. Every processing plat-
form can be divided into three phases, each with its own quality
control: (i) early stage that directly handles raw data, (ii) middle
stage that performs major data processing, and (iii) late stage that
executes post-processing to finalize the molecular quantification.

Microarray

Microarray is a technique to probe massive amounts of molecules
on a tiny slide based on hybridization principles.42,43 This general

Table 1 Overview of five omics-types and characteristics of relevant high-throughput technologies to profile omics-types. As of 09/05/17, the cost was
interrogated from scienceexchange.com and for each instrument, the range shows minimum and maximum cost per sample. As for quantity, coverage
was measured based on the depth 35X for genome, transcriptome, ChIP-Seq/-exo.188 For proteome, 55% for E. coli, 80% for human. Isoforms are not
counted. MS, mass-spectrometry; Y2H, yeast-two hybrids

Omics-types Platform Utility Cost Quantity (%) Quality review Resources

Genome DNA-Seq187 – Genome assembly
– Genetic variant identification

$250–$650 B95188 14 GEO16

SRA15

dbGaP17

Transcriptome RNA-Seq19 – Transcriptome profiling
– Novel transcript discovery
– Novel splicing event18

$175–$450 80–9919 20 GEO16

ArrayExpress21

SRA15

Proteome MS189 – Proteome profiling
– Quantification of PTMs
– Novel protein discovery22,23

$100–$171 55–9224,25 26 PRIDE27

ProteomeXchange28

ProteomicsDB24

Metabolome MS46 – Metabolome profiling
– Novel metabolite discovery29

$69–$90 o2030 31 MetaboLights32

Interactome ChIP-Seq
ChIP-exo36–38

– Genome-wide mapping of protein–DNA interactions
+ Gene-regulatory network
+ Histone modification maps
+ Nucleosome maps

$395–$415 B95188 38 GEO16

SRA15

hmChIP190

Y2H33 – Protein–protein interaction — 34–5035 191 STRING39

BioGRID40

PPI database review41
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principle allows profiling of many different aspects of molecules
ranging from genetic variants (DNA microarray) to quantification of
transcripts (e.g. cDNA microarray). The raw output is an intensity
image, which quantifies information about abundance of hybri-
dized molecules. Higher intensity of molecular hybridization is
regarded as that the specific molecule is present in higher abun-
dance. The intensity image is in turn processed in a series of steps

(e.g. background noise removal, normalization, and probe-set
summarization). An example of the output is expression levels of
molecules in cDNA microarray. Since the introduction of the
technology nearly two decades ago, methods to process raw micro-
array data have been extensively developed and matured. A few
suggested reviews on the microarray data processing methods are
ref. 47–49 (more information is in Table 3).

Table 2 Estimated availability of multi-omics data across different organisms. Organisms are selected from the review articles.192,193 For genome, in the
SRA database, we searched the keyword ‘‘[organism_name]’’ and the filter of source type being ‘‘DNA’’. For transcriptome, in google scholar, we searched
the keywords ‘‘[organism_name] transcriptome profiling’’. This gives 44 950 search results as of 09/05/17 and 3823 profiles were found. We multiply the
ratio (3823/44 950 = 0.085) to other organisms. For proteome, in google scholar, we searched the keywords ‘‘[organism_name] proteome profiling
mass-spectrometry’’. This gives 49 200 search results as of 09/05/17 and 137 profiles were found. We multiply the ratio (137/49 200 = 0.00273) to other
organisms. For metabolome, in google scholar, we searched the keywords ‘‘[organism_name] metabolome profiling mass-spectrometry’’. This gives
16 220 search results as of 09/05/17 and 696 profiles were found. We multiply the ratio (696/16 220 = 0.042) to other organisms. For fluxome, in google
scholar, we searched the keywords ‘‘[organism_name] 13C fluxome profiling’’. This gives 1590 search results as of 09/05/17. In-depth investigation shows
that there are 43 profiles in the results. We multiply the ratio of true number of profiles to number of google search results (43/1590 = 0.027) to other
organisms

Kingdom Species

Layer

Genome Transcriptome Proteome Metabolome Fluxome

Monera Escherichia coli 35 492 3579 137 696 43
Bacillus subtilis 445 967 56 180 13
Salmonella enterica 67 945 459 18 40 4

Protista Chlamydomonas reinhardtii 749 392 16 68 2
Emiliania huxleyi 38 45 2 8 0
Thalassiosira pseudonana 14 83 3 15 0

Fungi Saccharomyces cerevisiae 39 381 24 392 97 381 20
Chlamydomonas reinhardtii 744 373 15 75 2
Schizosaccharomyces pombe 2182 593 25 52 2

Plantae Arabidopsis thaliana 13 501 30 911 65 518 9
Maize 1998 10 882 69 381 6
Oryza sativa (Rice) 40 910 10 472 25 132 1

Animalia Homo sapiens (Human) 668 718 210 933 691 1519 45
Caenorhabditis elegans 8291 11 198 64 184 5
Drosophila melanogaster 12 692 10 918 52 13 2

Total 893 100 316 197 1335 4262 154

Fig. 2 Omics data processing pipeline. The processing pipelines for three major high-throughput technologies are shown. It is comprised of three
distinctive steps: (A) collection step, where the samples are processed and raw data are generated; (B) transformation step, where data are processed,
reads mapped and molecules identified; (C) interpretation step, where data are interpreted based on existing knowledge of the corresponding organism.
In all cases, quality control (QC) is applied at the end of each stage to ensure high data quality.
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Whole-genome sequencing

Whole-genome sequencing technology is a method to interrogate
complete information of DNA/RNA of an organism at a single
time. The recent advance in this field is the so called next-
generation sequencing which has ushered in a new era of
genomics by reducing the cost and time to interrogate whole-
genome information by profiling short sequence reads in a
massively parallel way.44 The raw data of short reads from the
sequencer are typically aligned on the reference genome to
localize short reads. Then the post-alignment step finalizes the
output and diverse omics information can be interrogated from
the variants of this technology including profiling of protein–
DNA binding events (e.g. ChIP-Seq and ChIP-exo). Processing
methods of sequencing data have been extensively reviewed
elsewhere (Table 3).

Mass-spectrometry (MS)

Mass-spectrometry (MS) is a technique where ionization of
chemical species is used to sort them based on the mass-to-
charge ratio. This technology has been widely used for interrogating
quantification of proteins and metabolites, and modification of the
sample preparation step (e.g. 13C labelling) allows profiling of
metabolic fluxes.50 Unlike metabolites, proteins are usually first
digested with a protease (e.g. trypsin) into short peptides to lower
the mass to be detectable by the instrument. MS produces an ion
spectrum which is then used to determine its molecular identify
by matching to theoretical spectra measured from the existing
databases.45,46 In the case of peptides, this step determines the
sequences of peptides. Then the next step is to quantify the target
molecules based on the amount of identified small molecules. Data
processing methods for mass-spectrometry have been extensively
reviewed and the suggested articles are in Table 3.

Multi-omics integration
Methods

Omics data integration is not new, with the first review of the
field appearing more than a decade ago,2,3 in both humans51 and
plants.52 Methods for multi-omics integration can be mapped
onto a discrete two-dimensional space (Fig. 3). One dimension

represents whether integration is a single or multiple omics-type
(breadth). The second dimension captures the depth of integra-
tion between data and data, data and knowledge or knowledge
and knowledge. As such, multi-omics data integration can be
categorized as follows.

Integration within a single omics type
Data-to-data. The integration of data within a layer typically

refers to the combination of genome-wide data for the same
omics type for a particular organism across different batches,
studies and platforms. Most studies along this direction have
been focused on the genomic layer and transcriptional layer,
as they are the most profiled. SEEK is a transcriptome com-
pendium for human, which provides 150k experiments with
platform-adjusted gene correlation measures.53 COLOMBOS is
a transcriptome compendium for 19 bacteria where all data are
formatted in contrast of two profiles between a test condition
and a corresponding control.54 Integration of expression pro-
files across different sources requires special attention in
normalization as many artefacts due to lab-to-lab variation may
arise.20 For more information, we refer readers to the review on
normalization methods.55 Integration within the genome layer
has been primarily performed across different types of genetic
variations to augment the feature set including between SNPs
and copy number variations56 and between common variants
and rare variants.57

Data-to-knowledge. Integration of genome-wide omics data
and other information about an organism. One notable method
in this area is ANNOVAR,58 which performs functional annota-
tion of genetic variants including gene annotation (e.g. splice
site variant, non-synonymous SNP). CEGMA59 identifies the
exon–intron structure from a novel genome sequence, which
is useful for annotating the genome sequence of an unexplored
organism. In addition, transcriptome profiles can be function-
ally annotated to identify novel transcriptional active regions
and to reveal alternative splicing patterns.60 Interpretation of
proteome data can be facilitated by STRAP, which automatically
annotates and visualizes user’s proteome data.61 Annotation
of metabolomic data is relatively new, compared to genomics
and transcriptomics and the tools to facilitate functional inter-
pretation of metabolomic experiments are recently reviewed
in ref. 62. A notable tool is MetaboAnalyst, which provides
comprehensive characterization of large numbers of metabo-
lites online.63

Knowledge-to-knowledge. Integration of facts about a single
omics type of a specific organism that have been compiled and
curated by separate groups and projects. Many of the existing
biological databases belong to this category, where the primary
goal is to curate functional molecular characteristics and their
interactions from multiple sources. Molecular characterization
is a resource-rich area, where a plethora of gene annotations
exist for different organisms including EcoCyc for E. coli,64 TAIR
for A. thaliana,65 SGD for S. cerevisiae,66 and NCBI OMIM for
human disease genes.67 Proteome knowledge has been extensively
curated in UniProtKB,68 which combines SWISS-PROT that is

Table 3 Review articles on processing methods for each type of high-
throughput technologies

High-throughput
technologies Type

Reviews on processing
methods

Microarray General 43–45
Gene-expression microarray 194
DNA methylation microarray 195

Sequencing RNA-Seq 196
DNA-Seq for genotyping 197
DNA-Seq for de novo assembly 198
ChIP-Seq 199

Mass-
spectrometry

Protein mass-spectrometry 200
Metabolite mass-
spectrometry

201

Molecular Omics Review
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manually annotated and reviewed as well as TrEMNBL that is
automatically annotated and not reviewed.69 Another example is
the HAMAP project, which combines automated curation and
manual curation of the microbial proteome database to facilitate
the speed of the curation process while preserving the accuracy of
the curated knowledge.70 For the metabolome, species-specific
databases are available ranging from ECMDB for E. coli and
YMDB for Yeast. For a more comprehensive list, refer to ref. 71.
In addition, specialized collections based on the type of inter-
action exist, including protein–protein,41 gene-regulatory,72 and
metabolic interactions.73

Integration across omics-types
Data-to-data. Integration of genome-wide data for multiple

omics types for a particular organism across different batches,
studies and platforms. Co-analyses of genomic data with
expression profiles from either the transcriptome, proteome,
or methylome fall under this category. The main goal of these
analyses is to identify the quantitative trait locus, and eQTL,
pQTL or mQTL are some techniques that are used for this
purpose.74 The integration of transcriptome and proteome data
has also led to the discovery of post-translational activities and
correlation between two omics-types under identical conditions.75

Proteogenome is an emerging field that employs proteomic data
to annotate genome sequences.76 There has been a growing list
of individual studies employing multi-omics data and recent
reviews concerning this subject exist. Their focus ranges from
grapevines77 to microbes,78 and single-cell technologies.79

Furthermore, there have been recent constructions of large-
scale multi-omics compendia. For example, MOPED is a multi-
omics compendium of four model organisms of human, mouse,
worm and yeast where it collects publicly available transcriptome
profiles and proteome profiles.80 Ecomics and MyMpn are multi-
omics compendia for E. coli4 and M. pneumonia, respectively.81

Data-to-knowledge. Integration of genome-wide data for a
multiple omics type for a particular organism and relevant facts
about the integrated omics type of the organism that have been
accumulated by a group of people through time. Many of the
studies belonging to this category integrate transcriptome
signatures with the protein–protein interaction network. The
underlying assumption here is that transcriptional expression
is a proxy of protein expression levels although its validity is
arguable.82 For example, ref. 83 reveals topological features of
cancer genes by combining the transcriptome and the interactome.
More recently, the genome, transcriptome, and interactome were
merged together to process mass-spectrometry data84 and plant
regulatory networks were inferred by integrating known regulatory
bindings, transcriptome, proteome, and metabolome data.85

Knowledge-to-knowledge. Integration of facts about a multiple
omics type of a specific organism that have been compiled and
curated by separate groups and projects. Integration of hetero-
geneous networks is the focus of the studies in this category.
For example, ref. 86 and 87 integrate metabolic, transcriptional
regulatory and signal transduction networks for E. coli for
metabolic flux predictions. Ref. 88 identifies network patterns

in the combined network of protein–protein interactions and
transcription regulation for S. cerevisiae. Gene-to-phenotype
associations in the context of biological networks have also
been studied extensively. For example, CIPHER89 employed
human disease genes and protein–protein interaction map to
infer novel biomarkers. Moreover, the power to identify
phenotype-associated genes can be improved by integrating
findings from genetic association studies and biological networks
and pathways.90

Challenges and limitations. Despite the growing availability
of genome-wide data in multiple omics-types, the limited overlap
between different omics-types prevents finding and understanding
latent dependencies and mechanisms. For example, in E. coli,
there are only 6 high-throughput profiles encompassing three
omics-types of transcriptome, proteome, and metabolome.4

In recent years, a growing number of studies are performing
multi-omics exploration under an identical condition (e.g. ref. 91)
and even large-scale collaborations are organized to profile
massive multi-omics data, which is accelerating to resolve the
lack of overlap issue (e.g. TCGA,92 hPOP).

Furthermore, biased exploration often subsists in the experi-
mental space of an organism,4 which limits our understanding
and ability to predictively model an organism. For instance,
among the top 5 strains and the top 5 media used for experi-
menting with E. coli, only 6 combinations out of 25 have been
explored.4 This partial sampling generates knowledge gaps, which
increase uncertainty. Computational methods, such as active
learning93 and optimal experiment design,94 can guide experi-
mentation to lower this uncertainty by selecting the experimental
space that we need to explore to inform predictive models and gain
a holistic view of an organism’s physiological behavior.

Furthermore, the lack of widely adopted standards in metadata
characterization prevents the efficient integration of such infor-
mation across different studies. Often this process requires
extensive manual labor to curate literature. There have been
suggestions on standardizing the way of describing experi-
mental metadata.95,96 Still we are in need of a more structured
approach if we aspire to use the resulting datasets for training
machine learning algorithms and predictive models. For example,
a specific minimal medium called M9 used for growing bacteria
can be created with different concentrations of each nutrient, while
the meta-data information may not mention it and reading the
corresponding publication may be necessary. Similarly, the growth
stage in which cultured bacteria are profiled is not mentioned
anywhere despite its significance.

Quality assurance and quality control
(QA/QC) for processed data
Overview

We provide an overview of the QA/QC procedure at the final
stage of omics data processing (Fig. 4). We focus on this stage
than the two previous stages because the final stage of QC has
a lot more commonalities than earlier QCs, which are heavily
dependent on instruments and processing methods that are
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used at each step. We can classify the final-stage QA/QC
methods based on the availability of control data into super-
vised and unsupervised.

Supervised QA methods

Supervised approaches rely on control data with known and
accurate molecular measurements. In this way, the quality of

data is determined based on the goodness of fit between the
processed and known molecular abundances in the control
data. As shown in Fig. 4, data exhibiting high correlation (green
points) may be used as anchors to adjust measurements of
other molecules that don’t have corresponding control mea-
surements based on the measured correlation. Typically, two
major types of control data are used to assess and to adjust
genome-wide measurements. One is called ‘‘spike-in control’’,
where known concentrations of selected molecules are profiled
together with high-throughput experiments. This approach
has been extensively used in different platforms to profile
transcripts,97 proteins,98–101 and metabolites.102 In the case of
genotypes such as SNPs, control data can be samples having
known genotypes, for example, of individuals precisely studied
from a large consortium (e.g. HapMap or 1000 Genomes Project).
Another approach is to generate high-quality measurements of
selected molecular species from the same isolate in an indepen-
dent setting (e.g. qPCR as a control for RNA-Seq datasets).

Unsupervised approach

In the unsupervised approach, the quality of molecular mea-
surements is compared based on ‘‘relative’’ criteria. That is,
parameters (e.g. expression levels of genes) consisting of samples
are compared with each other to evaluate the data quality. The
most popular method in this category is the clustering of multiple
genome-wide experiments. This way, the clustering results can
show how normal your experiment is compared to other
experiments if all experiments arise from the same condition
(a combination of environment, genotype, and phenotype). For
example, the two outliers in Fig. 4 are distinctively far away
from a major group, which ‘‘might’’ be an indication that those
are of low-quality. During the quality control step, these outliers can
be discarded to avoid any artefactual results. The unsupervised way

Fig. 4 Quality assessment and quality control. For ensuring data quality,
there exist supervised and unsupervised approaches. Supervised
approaches rely on control data that can be considered as high-quality
measurements (e.g. qPCR). In this way, the quality of data is determined
based on how well high-throughput and low-throughput measurements
are correlated. Highly correlated data (green points) are further used for
bias correction in cases where the corresponding control measurements
are missing. In the case of the unsupervised approach, measurements of
molecules across multiple profiles are first clustered, as in the case of
principal component analysis (PCA). Clustering and dimensionality
reduction techniques can reveal outliers (like the two outliers in the figure),
i.e. points that are distinctively far away from the clusters, possibly due to
low-quality samples. In the quality control step, the outliers can be
discarded to avoid any artefactual results arising from the outliers. The
PC on the x-axis refers to the corresponding principal component.

Fig. 3 Multi-omics organization in a cell. Omics data can be integrated within a layer or across multiple layers. Depending on the information and data
types involved, integration can be homogeneous (data to data) or heterogeneous (data to knowledge).
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of administering the quality of data has been widely used in a
variety of omics data ranging from genome (e.g. ref. 103 based on
PCA), transcriptome (e.g. ref. 104 based on clustering), and the
integration of multi-omics data with knowledge.105 One limitation
of the unsupervised approach, however, is its sensitivity to noise
and bias due to data paucity and process variation.

Predictive modeling and analytics
Overview

Machine learning analytics has been applied in biology to deal
with the intrinsic complexity in omics data with a long history
and its integration in recent years. The high-level overview of
the machine-learning analytic pipeline for integrated multi-
omics data is shown in Fig. 5 and consists of data preproces-
sing, modeling, and active learning. In this review, rather than
extensively exploring all steps in the pipeline of predictive
analytics, which has been studied elsewhere, we focus on
surveying recent applications of machine-learning methods
over integrated omics data (Table 4) and organize them based
on characteristics of problems in the context of omics
integration.

Data preprocessing

First, the multi-omics data are normalized to ensure that the
downstream analysis handles data effectively. For example,
scaled data are prone to convergence when gradient descent
is used. Feature normalization is another important topic and it
is covered extensively in ref. 106. The next step is feature
selection, which is to decide the subset of features that are
useful for modeling. In supervised settings, relevant methods
use similarity measures such as mutual information and
Pearson correlation coefficient, while unsupervised approaches
such as principal component analysis (PCA) are popular. Regu-
larization techniques can supplement these methods107 and a
relevant review on this is ref. 6.

Modeling

Supervised learning. It is a class of machine-learning methods
that infer a function from labeled data. The applications using
supervised learning in omics data are substantial than the other
classes in machine learning, and therefore, we subgroup methods
based on the type of the output layer to predict:

(1) Genome, transcriptome, proteome, metabolome, and
epigenome: the problems in predicting a genomic layer include
imputation of SNPs, and annotation of a variety characteristics
in genome including gene structure,108 splice site,109 and
promoter binding site.110 Typical input of such problems is
either of genome sequences or of genetic variants. Furthermore,
essential genes of bacteria are predicted with support-vector
machine using sequence characteristics and the co-expression
pattern in transcriptome profiles.111 With regard to transcrip-
tome output, the problems in predicting the transcriptome
layer include prediction of RNA structure112 and prediction of
eQTL113,114 given genome data. In addition to this, pre-mRNA
splicing events were predicted with an ensemble of machine
learning methods from genome data.115 Expression levels of
transcripts were predicted from genetic and epigenetic signatures
using a deep neural network.116 The problems in predicting the
proteome layer include prediction of different characteristics of
proteins. For example, protein function has been predicted using
omics data from different layers,117–119 and other examples
include secondary structure,120 metal binding site,121 glycosyla-
tion site,122 subcellular localization,123 and post-translational
modification124,125 given proteome sequence data. For metabolome
prediction, the primary goal is the prediction of metabolite sub-
structure and functional type given metabolome information.126,127

For epigenome prediction, inferring chromatin state from non-
coding variants has been of great interest as characterization of the
functional effect remains a challenge. This has been investigated
with different methods including deep learning methods128,129 and
support vector machine.130 Furthermore, predicting methy-
lated CpG from genome sequences has been studied with a
long history.131

(2) Interactome: prediction of gene–gene interactions has
been studied using many different machine-learning approaches
(please see the review in Ref. 132 for more information). More-
over, prediction of protein/DNA binding events given genome
sequences has been studied using a kernel-based method133 and a
convolutional neural network.134 Another network type is a map
of transcriptional regulation, which has been inferred based on
transcriptome data using ensemble learning.135 Protein–protein
interaction (PPI) networks have been predicted using random
forest trained over previously identified PPIs136 and transcriptome
dataset.137–139 The signaling network and metabolic pathways are
predicted using decision tree over transcriptome dataset140 and
a variety of machine learning methods over genome dataset,141

respectively.
(3) Phenome output: phenotype prediction is perhaps one of the

most heavily studied subjects among others in this category as
understanding genotype–phenotype relationships is a fundamental
goal in biology. This can be sub-classified into bacterial phenotype
prediction (e.g. growth rate prediction from transcriptome142),

Fig. 5 Iterative framework of predictive analytics over multi-omics data.
In the preprocessing step, normalization and feature selection are
performed for multi-omics data before model training and evaluation to
make models more generalizable, predictive and less vulnerable to noise.
Then supervised/unsupervised learning is performed to build a model from
training data and then the performance of the model is evaluated by
various criteria. The final model is then used to guide new experiments,
thereby adding new multi-omics to the original dataset.
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plant phenotype (e.g. stress prediction from three omics-types using
ensemble learning143), and human phenotype (e.g. prediction of

disease outcome and drug response from different omics-
types144–148 and from integration149). Moreover, biomarker

Table 4 Classification of machine learning methods for biological applications. In input layer, G, genome; T, transcriptome; P, proteome;
M, metabolome; E, epigenome; I, interactome

Output layer Problems Category
Methods and
References

Input omics-types

G T P M E I

Genome – SNP imputation Supervised Shallow learning202 O
– Gene structure annotation Supervised 108 O
– Alternative splicing and splice site Supervised 109 O
– Promoter binding site Supervised 110 O
– Essential genes Supervised 111 O O

Transcriptome – RNA structure Supervised 112 O
– eQTL Supervised 113 and 114 O
– Pre-mRNA splicing Supervised 115 O
– Gene expression Supervised 116 O O

Proteome – Protein function Supervised 118 O
117 O
119 O

– Secondary structure Supervised 120 O
– Metal binding site Supervised 121 O
– Glycosylation site Supervised 122 O
– Subcellular organization Supervised 123 O
– Post-translational modification Supervised 124 and 125 O

Metabolome – Substructure Supervised 126 O
– Metabolite type Supervised 127 O

Epigenome – Chromatin state Supervised Deep learning128,129 O
Shallow learning130 O

Unsupervised 162 and 163 O
– Methylated CpG Supervised 131 O

Interactome – Gene–gene interaction Supervised 132 O
– Protein/DNA-binding Supervised Deep learning134 O

Shallow learning133 O
Unsupervised 36 O

– Gene-regulatory network Supervised 135 O
Unsupervised 160 O

– Protein–protein interaction Supervised Active learning136 O
137–139 O

Unsupervised 159 O
– Protein/RNA-binding Supervised Deep learning134 O

Shallow learning203 O
– Signaling network Supervised 140 O
– Metabolic pathway Supervised 141 O O

Phenome – Microbial phenotype prediction Supervised Deep learning204 O
Ensemble8 O
Shallow142 O
Ensemble205 O

– Plant phenotype prediction Supervised 10 O
Ensemble143 O O O

– Human phenotype prediction Supervised Ensemble206 O
Active learning167 O
144 O
145 O
146 and 147 O
148 O
149 O O

– Biomarker Supervised 150 O
Unsupervised 158 O

– Novel sub-phenotype identification Unsupervised 154 O
155 O
156 O
157 O
207 O O

– Phylogenetic relationships Supervised Bayesian151 O
Unsupervised 161 O
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prediction has been studied using support vector machine
trained with proteomic data.150 Finally, phylogenetic relationships
between different organisms have been largely investigated based
on genome sequences, for example, by the Bayesian approach.151

To investigate how well methods can use different omics
data to predict phenotypic characteristics in novel environ-
ments, we curated the prediction performance of AUC reported
in the literature in recent years and the results (Fig. 6) show that
the reported predictability largely fluctuates depending on
the types of problems (AUC: 0.81 � 0.13). The prediction
performance of phenotype more dramatically changes with
the specific type of phenotype, compared to prediction of other

types of omics data. The most challenging problem is the
prediction of Parkinson’s disease (AUC: 0.56) and pancreatic
cancer (AUC: 0.58) from genomic signatures among the others
we compared. Gene–gene interaction (AUC: 0.75) and protein
function are some of the hardest problems among the others
we curated. Furthermore, several machine learning methods
have been used across different prediction problems. The list
includes regression-based methods, Naive Bayes, Support
Vector Machine, KNN, Ensemble method, and Neural network.
The Ensemble method was mostly used among others. This is
expected as the prediction based on multiple models is known
to outperform one that relies on a single model. Interestingly,

Fig. 6 Prediction performance of multi-omics models. We curated the literature of multi-omics models published between 2007 and 2017 (Table S1,
ESI†). We collected the reported AUC values and validated that the reported performance is indeed the highest for that specific problem, by also curating
any articles citing the referenced publication. We only investigated the articles providing AUC of their methods. In the case where the authors reported
multiple performance results in various settings, the highest AUC was included, while for different sub-tasks of the same prediction problem, we included their
average performance. References of the listed prediction problems: colon cancer,208 hepatocellular carcinoma,209 post-stroke depression,210 lung cancer,211

ovarian cancer,212 prostate cancer,212 pancreatic cancer,212 celiac disease,213 Crohn’s disease,213 ulcerative colitis,213 type 1 diabetes,214 Parkinson’s disease,215

inflammatory arthritis,216 pathogenic variant,204 epigenetic signature,217 methylated CpG,131 DNA/protein-binding affinity,218 protein–protein interaction,219 gene–
gene interaction,220 gene-regulatory network,221 metabolic pathway,141 post-translational modification (glycosylation site),122 protein function,222 subcellular
localization,223 metabolite type classification,127 essential genes,111 pre-mRNA splicing,115 gene expression.116
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the regression-based methods (e.g. logistic regression, LASSO)
were heavily used in the prediction of phenotype. Recent studies
combine complex models for the same prediction problems
although without much success, possibly due to the challenges
involved in integration of two or more omics data sources.152

Unsupervised learning. Unsupervised learning approaches
do not require class labels and draw inference from data in
the absence of answers.153 The most common unsupervised
learning is clustering, which has been widely used for identifying
novel phenotypic groups given expression signatures collected.
For example, identifying novel cancer subtypes from transcriptome
signatures has been widely investigated using cluster analysis such
as hierarchical clustering throughout a variety of cancer types.154

And this analytical framework has been applied in other omics-
types including proteome,155 metabolome,156 and epigenome.157

Furthermore, these methods have also been applied in many other
problems including biomarker identification,158 revealing mole-
cular relationships including protein–protein interaction,158,159

and gene-regulatory network,160 phylogenetics,161 etc.162,163

Model evaluation. In supervised settings, model performance
can be evaluated with independent data that are accompanied with
labels (i.e. answers). A typical way of evaluating model performance
is n-fold cross-validation. That is, a dataset is divided into n folds
and n� 1 folds are used for training whereas the remaining fold is
used for testing. And this procedure is repeated n times to iterate
testing for all n folds. Unlike supervised learning, model results
from unsupervised learning are evaluated in completely different
ways as exact answers are unavailable. For example, clustering
results can be evaluated based on (i) external criteria, which reflects
our intuition about the cluster structure, (ii) internal criteria, which
involves only quantities and features inherent to the dataset, and
(iii) relative criteria, which compares it to other clusters produced
from the same algorithm but with different parameter values.164

Active learning

Once a model is constructed and evaluated, active learning
guides what experiments to perform next to minimize uncertainty
in the model.93 It was first actively studied in supervised setting,
and more methods have been developed in unsupervised setting
in recent years.165,166 Active learning is particularly a significant
problem in the experimental design of genome-wide profiling
because of high cost in data generation (Table 1). For example, the
human protein–protein interaction network was actively learned
based on random forest.136 Another example includes ref. 167,
which argues that cancer classification can be improved with
active profiling of transcriptome signatures based on ML methods
such as Support Vector Machines. A recent review covers the
topics of active learning on experimental design for uncovering
molecular interactions.168

Other classes of machine learning methods

Semi-supervised learning. It is a class of supervised learning
that deals with partially labeled dataset for training. The semi-
supervised learning is particularly useful in many real-world
scenarios where acquisition of labeled data is expensive or
impractical. A variety of methods in this category have been

applied in omics integration, including the detection of disease
genes or the integration of protein–protein interaction networks
and transcriptome data.169 Prediction of deleterious SNPs from
the combined source of the protein–protein interaction network
and genetic variants is explored using low-density separation
(LDS).170 Moreover, semi-supervised learning is used over multi-
omics integration for cancer clinical outcome prediction.171

Reinforcement learning. Reinforcement learning is to teach
agents how to take actions in an environment to maximize
some notion of cumulative reward. This type of methods has
been widely used in many real word problems including robot
control172 and medical decision support system173 but it has
not been extensively studied in biology although many
potential applications might exist. One immediate instance is
to apply in the context of active learning where it develops a
decision support system of experimental design where actions of
experimental testing are administered to minimize uncertainty in
biological knowledge of an organism.

Deep learning methods. Deep learning is a recent advance in
machine learning that efficiently learns convoluted patterns
within a dataset by undergoing a series of non-linear
computations.174 The methods have been expanded to all
domains of machine learning including supervised, unsupervised,
and reinforcement learning. Due to the complexity in high-
throughput data, the potential applications of deep-learning
methods in biology are considered to be widespread.7 As of now,
its applications in biology have mostly focused on genomic data
for various supervised learning problems including protein-
binding site prediction134 and chromatin state prediction.128 For
a comprehensive review on the topic, refer to ref. 7 and 175–177.

Challenges and limitations

There are many caveats in machine learning analytics that must
be carefully administered. A wide range of issues have been
addressed in past reviews including overfitting, imbalanced
class size, and the curse of dimensionality.6 To be brief, the
overfitting problem arises when too complex a model (i.e. with
a large number of parameters) is trained over a few data points
and the trained model doesn’t behave well with unseen objects.
This problem is related to the curse of dimensionality because
most of the overfitting issues arise from too many parameters
to fit compared to given data points, which can be overcome by
feature selection before training a model. Moreover, imbalanced
class size is a widespread problem in many applications of machine
learning to omics data. This refers to the phenomenon that a
trained model preferably assigns a specific class label due to highly
skewed distribution of class labels. Many computational remedies
have been devised to cure such biased prediction including weight-
ing more cost in incorrect predictions to a minor class.178

Applications

Machine-learning analytics over integrated multi-omics data
has the capacity to make far-reaching impacts across multiple
industries. In medical applications, finding therapeutic targets
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and biomarkers is one of the major issues in human health,5

and such efforts are being more and more translated into the
real world (e.g. BERG, Eagle Genomics). Antibiotic resistance is
of paramount importance as it is considered a global threat and
machine learning methods can be applied for predicting anti-
biotic resistance from the molecular signature of clinical isolates
to select effective antibiotics.8 Biotechnological applications
include optimization of genetic and regulatory processes to
produce maximum yield of a certain substance, which can be
enabled by a prediction model trained over omics data.9

In agriculture, identifying stress response genes is of great
significance in crop management and machine learning can
accelerate such discovery.10,11 Finally, in food and nutrition
science, optimizing nutrition treatment for individuals is
enabled by machine learning over personal omics data accom-
panied with dietary information.12 Furthermore, machine
learning and multi-omics analytics can be used in food engi-
neering for producing the best quality of fermentation foods
with desired flavors13 once genome-wide profiles collected over
the course of fermentation process are available.

Next wave and future directions

The ability to generate high-throughput omics data and to build
intelligent systems based on large-scale data and convoluted
knowledge has revolutionized the way we conduct biology. Most
genome-wide technologies provide averages across population of
cells, which ignores variability at individual cells.79 High-resolution
understanding of molecular signatures in a cell is enabled with
single-cell assays,179 which are being expanded to interrogate the
multi-omics landscape of a cell.79 Furthermore, advances in
community-level profiling of molecules (e.g. metagenome sequen-
cing) facilitate the investigation of biodiversity that is directly
collected from the environment, which is not possible with con-
ventional cultivation-based technologies, and the type of molecular
species that can be profiled by such advancement is becoming
more diverse.180–183

Accompanied with the explosion of available data, rapid
advances in the development of cognitive systems facilitated by
artificial intelligence (AI) are revolutionizing many industries. For
example, IBM Watson that was first developed for human-like
question-answering is expanding for supporting decision of experts
in different domains ranging from healthcare to finance.184 We
believe that biology is not an exception to this ongoing paradigm
shifting. That is, we envision building a cognitive system for every
single organism that has the ability to process data, transfer
information, bring new knowledge, represent a knowledge map of
the organism in a structured way and suggest new experiments
based on machine-produced hypotheses.185,186 We firmly believe
that such systems can be a powerful assistant that can empower,
rather than replace, humans in their pursuit of scientific knowledge.
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