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ARTICLE INFO ABSTRACT

Rheumatoid arthritis (RA) is therapeutically challenging due to patient heterogeneity and variability. Herein we
describe a novel integration of RA synovial genome-scale transcriptomic profiling of different patient cohorts
that can be used to provide predictive insights on drug responses. A normalized compendium consisting of 256
RA synovial samples that cover an intersection of 11,769 genes from 11 datasets was build and compared with
similar datasets derived from OA patients and healthy controls. Differentially expression genes (DEGs) that were
identified in three independent methods were fed into functional network analysis, with subsequent grouping of
the samples based on a non-negative matrix factorization method. RA-relevant pathway activation scores and
four machine learning classification techniques supported the generation of a predictive model of patient
treatment response. We identified 876 up-regulated DEGs including 24 known genetic risk factors and 8 drug
targets. DEG-based subgrouping revealed 3 distinct RA patient clusters with distinct activity signatures for RA-
relevant pathways. In the case of infliximab, we constructed a classifier of drug response that was highly ac-
curate with an AUC/AUPR of 0.92/0.86. The most informative pathways in achieving this performance were the
NFkB-, FceRI- TCR-, and TNF signaling pathways. Similarly, the expression of the HMMR, PRPF4B, EVI2A,
RAB27A, MALT1, SNX6, and IFIH1 genes contributed in predicting the patient outcome. Construction and
analysis of normalized synovial transcriptomic compendia can provide useful insights for understanding RA-
related pathway involvement and drug responses for individual patients.
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1. Introduction

Rheumatoid arthritis (RA) is a complex autoimmune disease invol-
ving a multitude of environmental and genetic factors that exhibit
nonlinear dynamic interactions [1]. The disease is characterized by
chronic inflammation of the synovium, which results in irreversible
damage to the bone tissue over time, leading to pain and joint function
impairment. Severity and clinical course of the disease is highly vari-
able across the different patients and hence difficult to predict [1].
Despite the success of tumor necrosis factor (TNF) inhibitors, over 30%
of patients do not respond fully to therapy [2]. Moreover, a consider-
able subset of the patients who showed initial good response experience

[2]. A personalized treatment that provides the best possible drug
combination for a patient is likely to improve our ability to treat RA and
avoid patient relapse. Despite the fact that RA pathophysiology is ac-
tively researched, we still have partial understanding regarding the
mechanistic basis of disease progression, which is critical to administer
personalized and precise care.

In RA, gene expression profiling has been used to gain insights re-
garding pathogenesis and drug response [3]. Unfortunately, these stu-
dies have been conducted in unrelated small sample size cohorts, that
exhibit high heterogeneity (sex, age, and ethnicity), differences in
technical protocols, microarray platform, and data analysis methods,
thus hindering a comprehensive analysis across all available datasets. In
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addition, most studies have collected samples from whole blood or
peripheral blood mononuclear cells, which are easier to acquire but
have a limited capacity to adequately reflect local joint inflammation
[4-6].

In this study, our aim is to elucidate the various transcriptional and
signaling signatures of RA by performing a comprehensive meta-ana-
lysis of the publicly available datasets. We focus on the American
College of Rheumatology (ACR) classification criteria and analyze ex-
clusively synovial tissue samples to avoid the high false discovery rates
coming from blood samples. We have applied several preprocessing and
normalization steps to create a cohesive, homogenized compendium of
genome-wide gene expression signatures for downstream analysis. We
used this compendium to separate expression-driven subgroup, under-
stand the key cellular components in each group and then use genes and
pathways with high information value that we have identified to create
predictive models for drug responsiveness.

2. Methods
2.1. Systematic search and data collection

We used the keywords “Rheumatoid Arthritis (RA)”, “Synovium or
synovial tissue”, “Transcriptomics or microarray”, “Dataset” in Google
Scholar and PubMed to find relevant publications to the topic of sy-
novial gene signatures of patients with rheumatoid arthritis (Fig. 1). We
retrieved all publications that used the American College of

A. Literature search: Integration
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Rheumatology (ACR) classification criteria for diagnosis of RA [7] and
relevant criteria for OA [8] (20 studies in total). From the resulting set,
we removed entries that had been duplicated and selected datasets
measuring over 10,000 genes to secure the largest size of genes and
samples. Since there was a trade-off between the number of studies to
include and the number of genes that are within the intersection from
all datasets, we optimized the product of the two by selecting the point
where these two trends cross (Supplementary Fig. S1). The final RA
sample count was 256, the osteoarthritis (OA) count 41, and 36 normal
(NC) samples were included as controls. Clinical characteristics of the
RA patients were summarized in Supplementary Table 1. Ultimately,
the final RA compendium was constructed out of 11 studies with a total
of 333 samples, one per patient, covering 22,721 genes total (common
core of 11,769 genes).

2.2. Data normalization and removal of batch effects

For one-channel arrays, the image data was first imported and then
the Robust Multi-array Average (RMA) method was applied for a set of
replicates for background correction, normalization, probe-set sum-
marization. For dual-channel arrays, the image data were imported and
background correction was performed using normexp as it was shown
to outperform other methods. Red and green channels were separated
and quantile-normalized for each set of replicates. The vectors for the
matrices were normalized using the quantile normalization method.
Residual technical batch effects arising due to heterogeneous data

Fig. 1. Overview of the data processing steps. (A) Twenty studies
maximally covering 20,511 genes were retrieved from the literature.

of 20 datasets related to arthritis # Genes: (B) Selected were 11 datasets adequate to integrated analysis, which
1,035 - 22,721 included 256 RA, 41 OA, and 36 NC samples covering 11,769 gene.

(C) The merged dataset was normalized using quantile method and its

batch effect was corrected. (D) DEG of RA compared to OA or NC were

obtained using three methods, eBayes, SAM, and RP. Intersection of

B. Filtering: Identify datasets with more three DEG sets was chosen as significant DEG. The number of DEG was
than 10,000 genes and diagnosis of 2762 in RA versus OA and 3087 in RA versus NC. (E) A list of stra-
Rheumatoid Arthritis (RA), Osteoarthritis tegies for integrated analysis. (Abbreviation: RA, rheumatoid arthritis;
(OA) and Normal Control (NC). 11 #1?6;69;: OA, osteoarthritis; NC, normal controls; DEG, differentially expressed

datasets total.

C. Normalization: Quantile
normalization and de-batching

D. DEG filtering: Empirical Bayes
(eBayes) method using Benjamini
and Hochberg (BH) procedure,
Significance Analysis of
Microarray (SAM), Ranked
Products (RP)

RA vs. OA

E. Integrated analysis:

» Functional & Gene-Set enrichment
analysis

* Network analysis

* Molecular subgrouping

« Pathway activation scoring

» Predictive modeling for treatment
outcome

genes; eBayes, empirical Bayes; SAM, significance analysis of micro-
array; RP, rank products).
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integration were corrected using the ComBat function within the em-
pirical Bayes package. Quality assurance and distribution bias was
evaluated by Principal Component Analysis (Supplementary Fig. S2).

2.3. The RA compendium

After preprocessing, the gene expression profiles have a significant
reduction of systematic, dataset-specific bias in comparison with the
same dataset before normalization and batch correction
(Supplementary Fig. S2). The resulting compendium has a gene size of
11,769 in 333 samples, including 256 RA patients, 41 OA patients, and
36 normal controls. In 105 of the RA samples, synovial tissue sampling
was conducted before the start of certain drug: 11 for adalimumab, 62
for infliximab, 8 for methotrexate, 12 for rituximab, and 12 for tocili-
zumab. For these patients, assessment of disease activity and response
was performed per the EULAR response criteria [9] 12-16 weeks after
initiation of therapy: 32 were good, 47 were moderate, and 26 were
poor responders.

2.4. Filtering of differentially expressed genes

In order to identify the differentially expressed genes (DEGs), we
employed three widely-used methods: (a) an empirical Bayesian
method using the Benjamini and Hochberg procedure with a sig-
nificance threshold at an adjusted p-value < .05; (b) the Significance
Analysis of Microarray (SAM) method, with a significance threshold of
false discovery rate (FDR) < 0.05; (c) the Rank Products (RP) method
with a significance threshold set at percentage of false prediction
pfp < 0.05. The resulting list of DEGs is the intersection of the three
individual DEGs sets for each method to minimize the FDR statistic.

2.5. Functional enrichment analysis

We performed functional enrichment analysis focusing on the up-
regulated DEGs using the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) software [10]. Terms were regarded
significant if the p-value (EASE score) is lower than 0.05, the enrich-
ment score higher than 1.3, and the fold enrichment was larger than
1.5.

2.6. Gene set enrichment analysis

Gene set enrichment analysis (GSEA) analysis was carried out using
the GSEA software from the Broad Institute to assess the over-
representation of RA-related gene sets [11,12]. The enrichment results
were visualized with the Enrichment Map format, where nodes re-
present gene-sets and weighted links between the nodes represent an
overlap score depending on the number of genes two gene-sets share
(Jaccard coefficient) [13]. To intuitively identify redundancies between
gene sets, the nodes were connected if their contents overlap by > 25%.
Clusters map to one or more functionally enriched groups, which were
manually circled and assigned a label.

2.7. Construction of protein-protein interaction network

To assess the interconnectivity of DEGs in the RA synovium samples,
we constructed a protein-protein network based on the interaction data
obtained from public databases including BIOGRID [14], HPRD [15],
IntAct [16], Reactome [17], and STRING [18]. In the network, nodes
and edges represent genes and functional or physical relationships be-
tween them, respectively. Graph theory concepts such as degree, clo-
seness, and betweenness were employed to assess the topology of this
network. Hub molecules were defined as the shared genes in top 10%
with the highest rank in each arm of the three centrality parameters
[19].
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2.8. Non-negative matrix factorization and determination of the optimal
number of clusters

To classify the RA patients into subgroups based on their molecular
signatures, we used the non-negative matrix factorization (NMF)
method. NMF clustering is a powerful unsupervised approach to iden-
tify the disease subtype or patient subgroup and discover biologically
meaningful molecular pattern [20,21]. We applied the consensus NMF
clustering method and initialized 100 times for each rank k (range from
2 to 6), where k was a presumed number of subtypes in the dataset. For
each k, 100 matrix factorizations were used to classify each sample 100
times. The consensus matrix was used to assess how consistently
sample-pairs cluster together. We then computed the cophenetic coef-
ficients and silhouette scores for each k, to quantitatively assess global
clustering robustness across the consensus matrix. The maximum peak
of the cophenetic coefficient and silhouette score plots determined the
optimal number of clusters [20]. To confirm unsupervised clustering
results, we used t-distributed stochastic neighborhood embedding (t-
SNE) [22], a powerful dimensionality reduction method. The t-SNE
method captures the variance in the data by attempting to preserve the
distances between data points from high to low dimensions without any
prior assumptions about the data distribution.

2.9. Scoring of pathway activation

To quantify certain biological pathway activity, we calculated the
gene expression z-scores [21,23]. Briefly, a Z-score is defined as the
difference between the error-weighted mean of the expression values of
the genes in each pathway and the error-weighted mean of all genes in a
sample after normalization. BCR-, chemokine-, Jack-STAT-, MAPK-,
NFkB-, p53-, PI3K-AKT-, RIG-I-like receptor-, Fc ¢ RI-, TCR-, TGFp-,
TLR-, TNF-, VEGF-, and Wnt signaling pathways and their gene sets
were imported from Kyoto Encyclopedia of Genes and Genomes (KEGG)
database [24] and IFN type I- and type II signaling pathways and their
gene sets referred to Reactome database [17]. Z-scores were computed
using each pathway in the signature collection for each of the samples,
resulting in a matrix of pathway activation scores.

2.10. Supervised learning analyses for the prediction of drug responsiveness

We used Naive Bayes (NB), Decision Trees (DT), k-Nearest-
Neighbors (KNN), and Support Vector Machines (SVM) to create drug
responsiveness predictors [25,26]. Each binary SVM was built using
Gaussian Radial Basis Function (RBF) kernel and the Sigma hy-
perparameter was determined from the estimation based upon the 0.1
and 0.9 quantiles of the samples. For soft margins, the C parameter that
achieved the best performance was in the range of 2~ * to 27. For KNN,
the k parameter was tuned in the range 2 to 20. All tuning hy-
perparameters were separately determined for each bootstrapped
training dataset.

To determine the optimal feature set that enables distinguishing
‘good’ from ‘not good’ responders with the highest accuracy according
to the EULAR response criteria [9], we employed the wrapper feature
selection method [26]. The wrapper method uses the classifier as a
black box to rank different subsets of the features according to their
predictive power. In the wrapper method, a feature set is fed to the
classifier and its performance is scored and the feature set with the
highest rank is selected as the optimal feature set. The predictive power
of each predictor was assessed through Receiver-Operator Character-
istics (ROC) and Precision-Recall (PR) curve [27]. Data was separated
into independent training and test sets in a three-to-one sample-size
ratio in a way of stratified random sampling. To make up for small
sample size and minimize the error, we constructed the pool of re-
sampled dataset by applying bootstrapping with 1000 iterations and
subsequently applying a stratified 10-fold cross-validation (CV) for each
bootstrapped dataset [25,26]. Tenfold CV measures the prediction
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performance in a self-consistent way by systematically leaving out part
of the dataset during the training process and testing against those left-
out subset of samples. Compared to the test on independent dataset, CV
has less bias and better predictive and generalization power. The pre-
dictive ability of the models generated from all the approaches was
tested by performing the CV test at all the ten locations under study.
Given the unequal numbers of trials in each class, balanced accuracy
formula was employed to calculate the accuracy [28]. The baseline is
estimated by random expectation based on the pre-determined ratio of
each condition. In case of infliximab, a probability of 0.29 (18/62) for a
“good” and 0.71 (44/62) for a “not good” responder was applied.

2.11. Statistical analysis

For continuous distributed data, between-group comparisons were
performed using the one-way ANOVA, unpaired t-test or Mann-Whitney
U test. Categorical or dichotomous variables were compared using the
chi-squared test or Fisher's exact test. To investigate the difference of
pathway activation score across the subgroups, we fitted the one-way
ANOVA model using logistic regression. All analyses were conducted in
R (The R Project for Statistical Computing, www.r-project.org) and R
packages used in the analysis and their references were summarized in
the Supplementary Table S3.

3. Results
3.1. The RA transcriptomics compendium

To get a list of RA-related DEGs, gene expression profiles of RA
patients were compared with samples from the OA and NC groups. We
identified 2762 DEGs for RA versus OA, and 3087 DEGs for RA versus
NC (Fig. 1). Distribution of DEGs was assessed after the DEGs were
divided into up- and down-regulated groups (Fig. 2A). The number of
up-regulated DEGs was 1486 for RA versus OA and 1774 for RA versus
NC. The intersection between two up-regulated DEG sets was 876,
which we considered as RA-unique (Fig. 2A and supplementary File
S1).

3.2. Enriched biological processes and protein-to-protein interaction
network

We performed a gene-set enrichment analysis [11,12] where 206
gene ontology processes were identified (Fig. 2B and Supplementary
Fig. S3). As expected, immune-related biological processes including
adaptive and innate immune response, T and B cell activation and re-
sponse, and cytokine-related responses, were enriched. These occupied
the main positions in the network and closely connected to each other.
Among cytokine-related processes, interferon-f (IFN-f), interferon-y
(IFN-vy), interleukin (IL)-4, IL-10, IL-12, IL-17, toll-like receptor (TLR),
and TNF-related processes stood out as being substantially more en-
riched.

Interestingly, several biological processes associated with viral in-
vasion and defense response against viruses were over-represented
within the up-regulated DEGs (Supplementary Fig. S4). Metabolic
processes such as calcium ion regulation and protein synthesis/trans-
portation were also enriched (all P < .01). Analysis of the down-
regulated genes depict an over-representation of processes related to
cell growth and transcription, as well as signal transduction of specific
pathways such as p38MAPK (Supplementary Table S4).

Identification of central attractors in the gene and protein network
can provide targets for further experimentation and/or drug discovery.
For this reason, we constructed the protein-to-protein interaction net-
work of RA (Fig. 2C). We identified 3563 interactions among the 876
DEGs. Thirty-one of DEGs were overlapped with RA genetic suscept-
ibility loci previously discovered [29] (Supplementary Fig. S5) and a
total of 56 genes were ranked as hub molecules based on the centrality
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analysis. The CD2, PTPRC (protein tyrosine phosphatase, receptor type
C, also known as CD45), and PRKCQ (protein kinase C theta) were RA-
susceptible genes having hub position in the network and products of
these genes are involved in signal transduction of T cells. Eight genes
including primary targets (JAK2, SYK, CTLA4, MS4A1) and counterpart
receptor molecules (TNFRSF14, TNFRSF17, TNFRSF18, and IL21R) of
cytokines targeted by the drugs currently in use or under clinical trial or
development are also differentially expressed [30,31]. Interestingly, the
targets of small molecule therapeutics, JAK2 and SYK are central hub
nodes, in contrast to the targets of biologic agents, such as CTLA4,
MS4A1 (also known as CD20), TNFRSF14, TNFRSF17, and TNFRSF18.
We found 219 RA-associated genes from the DisGeNet database [32],
which are genes and variants having an important role in RA patho-
physiology. Forty-six of them were overlapped with the RA synovial
DEG. To assess topological proximity between RA-associated genes and
drug targets in PPI network of synovial DEGs, the shortest distance
between nodes was calculated (Supplementary Fig. S6). Mean distance
of JAK2 and SYK was 2.11 * 0.69S.D. and 2.09 *+ 0.68, respectively,
and significantly shorter than those of other target molecules (range,
2.65-3.39) (in all cases P < .05).

3.3. Identification and characterization of molecular subgroups

Next, we assessed whether RA patients can be categories in sub-
groups based on their expression profiles through consensus non-ne-
gative matrix factorization (NMF) clustering [20]. To identify the op-
timal number of clusters and to assess robustness of the clustering
result, we computed the cophenetic coefficient and silhouette score for
different numbers of clusters from 2 to 6, where we found that 3
clusters are the optimal representation of the data (Fig. 3A, Supple-
mentary Fig. S7, and Supplementary Methods). Segregation of RA
subgroups was also reproduced by t-distributed stochastic neighbor-
hood embedding (t-SNE) and principal component analysis (PCA)
(Fig. 3B and C). To understand the differences among the three clusters,
we curated the 17 representative RA-relevant signaling pathways from
the result of gene-set enrichment analysis (Fig. 2B) based on the lit-
eratures [31,33-35] and analyzed the activation of individual path-
ways. As shown in the chord diagram, these pathways are strongly
connected, with only TGFf3-, P53-, and Wnt signaling pathways more
isolated than others (less shared DEGs). Especially TGFf3- and Wnt, have
an opposite trend in their DEG expression (higher in cluster 1, mid in
cluster 2 and low in cluster 3), which is the opposite of the trend we
observe in most of the other pathways (Fig. 4 and Supplementary Fig.
S8). P53 signaling pathways shared fewer genes with other pathways
but strongly correlated with BCR-, chemokine-, TCR-, TLR-, and TNF
signaling pathways.

While the activation scores of all pathways exhibited significant
difference across the various clusters, all clusters exhibited one of the
two trends in a statistically significant manner (P < .05 in all cases)
and in accordance with the observation through DEG-driven enrich-
ment (all cases except TNF). Compared with RA cluster 2 and 3, RA
cluster 1 had moderate activation scores for most of the proin-
flammatory signaling pathways but high for PI3K-AKT-, TGFf3- and Wnt
signaling pathways, which are principally involved in synovial pro-
liferation and tissue remodeling [36]. RA cluster 2 and 3 showed
comparable activities for most of the proinflammatory pathways. More
active in RA cluster 2 were the P53- and PI3K-AKT signaling pathways,
which were reported to play a role in regulating survival of synovio-
cytes or macrophages [37,38]. In RA cluster 3, TCR-, Jak-STAT-, and
NFkB signaling pathways were more activated and it is noteworthy that
IFN signaling pathways were most scored. Cellular processes affected
by these pathways are in agreement with the DEG-driven enriched gene
ontology (GO) terms in each cluster (Supplementary Fig. S9). This re-
sult indicates that there exist RA subgroups representing a distinct
mode of inflammation deflected toward a certain combination of sig-
naling pathways (Supplementary Table S5).
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Fig. 2. Differentially expressed genes and their functional network. (A) Venn diagram showing the overlap of up- and down-regulated DEG between RA versus OA
and RA versus NC. (B) Gene-Set enrichment map for up-regulated DEG. Nodes represent GO-termed gene-sets. Their color intensity and size is proportional to the
enrichment significance and the gene size, respectively. Edge thickness represents the degree of overlap between gene sets and only edges with a Jaccard coefficient
larger than 0.25 were visualized. Clusters of functionally related gene-sets were manually curated based on the GO parent-child hierarchy and assigned a label. (C)
Protein-Protein interaction network of up-regulated DEG. Red and blue nodes indicate the known RA-susceptible genes and drug target molecules, respectively. Drug
targets were defined subject to the targets of drugs currently in use or under clinical trial and development. Yellow nodes correspond to the hub molecules, which are
determined as the shared genes in top 10% with the highest rank in each arm of three centrality parameters; degree, closeness, and betweenness. Orange, green, and
purple colored-nodes are the overlapped between red and yellow, yellow and blue, and red and blue ones, respectively. Right-side inset box is the schematic diagram
of the interesting genes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.4. Clinical implication of the 3 molecular subgroups Distribution of 3 subgroups did not differ between two datasets

(P = .754) (Fig. 5B), indicating gene expression pattern by 3 subgroups

Next, we examined the relationship between identified 3 subgroups would be an intrinsic characteristic irrespective of disease duration and
and the pertinent clinical features based on the provided information. activity.

There was no difference in gender ratio, age distribution, and tissue
sampling method across the subgroups (P > .10 in all cases, see
Supplementary Fig. S10). The frequency and distribution of 3 sub-
groups by seropositivity was estimated on basis of the information
available in the 9 datasets (233 samples). Cluster 2 and 3 were pre-
dominant in the seropositive, while cluster 1 prevailed in the ser-
onegative (P < .001) (Fig. 5A). Because data on the disease duration

and activity were not fully provided for each sample, we compared two we were not able to identify any such association (Supplementary Fig.
distinctively opposing datasets from compendium: the first (GSE45867) S11). Cluster 1 patients had an encouraging response to tocilizumab but
includes naive, untreated RA patients with disease duration of < 1 year, at a low statistical significance level (P = .082). In addition to the in-
moderate disease activity and with arthroscopic needle biopsy per-
formed before methotrexate or tocilizumab therapy [39]. The second
(GSE21537) is a cohort of the long-standing RA patients with high
disease activity who had failed at least two DMARDs (including meth-
otrexate) and did arthroscopic needle biopsy before infliximab therapy
[40]. Disease duration and activity were significantly longer and higher
in the latter dataset (all P < .001) while there was no difference in age,
gender, and RF positive between two datasets (all P > .10).

3.5. Toward a predictor of drug response

For 105 RA samples that we had drug effectiveness data, we tested
the hypothesis that there is an association between drug responsiveness
and cluster membership. Out of the 5 drugs that we had data on
(adalimumab, infliximab, methotrexate, rituximab, and tocilizumab)

tricacy of the pertinent pathways, the small size of samples treated by
the specific drug, and their potential heterogeneity make the associa-
tion between drug responsiveness and RA clusters difficult.

Since the differential expression of genes and pathways is at a
higher resolution than general clustering signatures, we tested whether
drug response can be predicted by using such features. We focused on
the patients that were treated with infliximab due to the larger sample
size (n = 62). To test this hypothesis, we applied outcome to a binary
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Fig. 3. Identification of novel RA subgroups according to synovial signatures. (A) Reordered consensus matrices on RA compendium. The samples were clustered
using average linkage and 1-correlation distances. Deep-red color indicates perfect agreement of the solution, whilst blue color indicates no agreement (Right-side
color bar). Basis and consensus represent clusters based on the basis and consensus matrices, respectively. The silhouette score is a similarity measure within its own
cluster compared to other clusters. (B) t-SNE and (C) PCA reduces the dimensions of a multivariate dataset. Each data point is assigned a location in a two-
dimensional map to illustrate potential clusters of neighboring samples, which contain similar gene expression patterns. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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classification (labels of “good” and “not good” responder according to
the EULAR response criteria [9]) and tried two approaches: pathway-
driven and DEG-driven models. Note that PCA analysis does not reveal
separating distributions between the “good” and “not good” responders
both for pathway activation score and DEG values (Supplementary Fig.
S12).

As features, we used the 17 pathways that are represented by con-
tinuous variables through their activation scores (refer to the pathway
activation score for each pathway in the Supplementary File S2). To
reduce the number of dimensions we performed feature selection
through recursive elimination (Supplementary Table S6). Based on
those results made a predictive model using 4 supervised machine
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Fig. 6. Predictive models and their performance. (a) Pathway-driven models. (b) DEG-driven models. (Left plot) The training and testing balanced accuracy for each
classifier as compared with the baseline. All models outperformed the baseline (all P < .001) and the performance of the trained models was significantly com-
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learning methods (NB, DT, KNN, and SVM) for selected key pathway
scores and calculated the performance. All models outperformed the
baseline (all P < .001) (Fig. 6A, left plot) and SVM, the best per-
forming model, had an average performance AUC (area-under-curve of
ROC/AUPR (AUC of PR)) of 0.87/0.78 (all P < .001) (Fig. 6A, middle
and right plots). The selected key predictors for SVM model were
NF«B-, FceRI-, TCR-, and TNF signaling pathways. Next, models based
on expression values of DEG were fit in order to sort out the informative
genes and compare their performance with pathway-driven models.
DEG-driven models showed superior performance as compared with
pathway-driven models (Fig. 6B, left plot). The AUC of the ROC curves
exceeds 0.85 (Fig. 6B, middle and right plots). SVM showed the best
performance AUC/AUPR of 0.92/0.86 and with the HMMR, PRPF4B,
EVI2A, RAB27A, MALT1, SNX6, and IFIH1 genes as features. The ex-
pression of these genes provide a distinct signature between two dif-
ferent outcomes (P < .05 in all cases, see Supplementary Fig. S13).

4. Discussion

Here, we built the largest RA compendium made by synovial tran-
scriptomes. DEGs extracted from this compendium encompassed the
susceptible genes and target molecules. Their topology in the network
has opened new possibilities to elucidate biological roles and offer a cue
for existing clinical questions. Unbiased cluster analysis of RA com-
pendium resulted in meaningful categories of RA patients with distinct
activity for relevant pathways. The pathway-based analysis allowed
refinement in our understanding of RA subgroups and it was also fea-
sible to construct pathway- or DEG-driven predictive model for in-
tended treatment by machine learning methods.

Synovial tissues are considerably more difficult samples to obtain,
as they are obtained during joint replacement surgery, synovectomy or
by arthroscopy at 4-8 sites of the affected joint. However, they are more
suitable to understand the mechanism and response to RA, since blood-
derived samples are a distant and hence more noisy proxy to the dis-
ease, with known quality issues [4-6]. Moreover, to refine the RA-un-
ique genes, we compared RA samples with two control sets (OA and NC
groups) and adopted the DEGs shared by three independent methods.

We found that 24 of the DEGs are the known RA-associated genetic loci
and take a central position in the synovial network. Since functional
implications of risk allele were often obscure, it would be helpful to
elucidate the biological mechanisms in which risk alleles operate.
STATI1, a transcription factor downstream of IFN signaling pathway,
highlighted as a key molecule in the previous reports [41,42], was
found to be one of the hub genes. Other hub genes, such as JAK2, SYK,
and BTK are small molecules that have increasingly drawn attention as
novel therapeutic targets following the cytokine-targeting biologics
[31]. In contrast, molecules such as TNF receptor molecules, CTLA4,
IL6R, and MS4A1 were located at the functional periphery of the net-
work although drugs against these molecules are widely used in clinical
practice. Moreover, these molecules were placed farther from RA-as-
sociated genes than JAK2 and SYK in the network, inferring part of
their less potent efficacy in active RA. This was in good harmony with a
recent clinical trial that baricitinib, an inhibitor of the Janus kinases
JAK1 and JAK2, showed a stronger therapeutic effect as compared with
ADLM, a TNF inhibitor [43].

Biological processes and pathways identified from RA compendium
show what is happening in the inflamed synovium of RA and are in
good line with the previous studies [5,41,44]. It is worthy of note that
processes concerning viral cycle and anti-viral response were found to
be enriched. This could be the internal process analogous to or the
vestige of viral infection such as Chikungunya virus [45,46]. A series of
studies pointed out activation of IFN-related gene signatures in a subset
of RA patients and its substantial similarity to viral infection
[5,41,44,46-48] and one reported that the type I IFN signature nega-
tively predicts the clinical response to rituximab treatment in patients
with RA [47]. Here, our results suggest that such a probable link be-
tween the IFN signature and the anti-viral response may exist [46].

Interestingly, we were able to identify three distinct subgroups
through NMF analysis of the RA compendium and they differed in ac-
tivation level of RA-relevant signaling pathways [20,21]. Various
combinations of molecular perturbations might converge to dysregu-
lation of common pathways and lead to the similar phenotype [49].
Since combinations of genomic perturbations are variable across the
patients, pathway- or module-based approaches are desirable for a
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better understanding of complex inflammatory disease like RA. We
looked at the enriched pathways derived from DEGs, which were
commensurate with the pathway activation scores calculated from the
whole gene list in the compendium. The RA cluster 1 was weighted
toward signals regarding synovial proliferation and tissue remodeling
(PI3K-AKT-, TGFB- and Wnt signaling pathways) [36]. RA clusters 2
and 3 showed a strong disposition for proinflammatory signaling
pathways (Chemokine-, TNF-, TLR- and VEGF signaling pathways).
Apoptosis-related pathways (P53- and PI3K-AKT signaling pathway)
were much prominent in RA cluster 2 [37,38], while BCR-, Jak-STAT-,
NF«B-, and TCR signaling pathways were stronger in RA cluster 3. It is
known that synoviocytes are the main culprit of invasive synovium and
quantitative and qualitative activities of synovial macrophage reflect
therapeutic efficacy [50,51]. They add to the cellular resistance to
apoptosis and increase of the potential for proliferation, hence they
contribute to the progression and perpetuation of destructive joint in-
flammation. Therefore, we speculate that an aggressive suppression of
pro-inflammatory signals would be better pertinent to RA cluster 3,
while therapeutic strategies to control propagation and survival of sy-
noviocytes and macrophages together with anti-inflammatory treat-
ment should be considered in RA cluster 1 and 2 (Supplementary Table
S5) [52]. This insight, together with the candidate gene targets for drug
development that we have identified in each cluster, may provide good
starting points for delivering precision and personalized treatment.

Machine learning has become ubiquitous and indispensable for
solving complex problems in most sciences [53]. Since the problem of
unresolved heterogeneity is prevalent to medicine, the same methods
are expected to open up vast new possibilities in medicine and actively
employed in a variety of clinical research [53]. We tried to make a
predictive model for 62 samples that were obtained from the synovial
tissue of RA patients before administration of IFXM. Because key fea-
tures are informative for predicting the outcome rather than being di-
rectly implicated in the major pathways or usual suspects related to the
RA synovium, they could be different depending on drugs and models.
The fact that we achieved high performance scores in RA response
prediction from mining the RA compendium, despite this was not at-
tainable through individual statistical techniques in the past [40], ar-
gues that similar techniques can guide us to narrow choices for more
effective drugs. Interestingly, DEG-driven models outperformed models
that were relying on pathways as features. Among 7 featured genes in
SVM model, HMMR (Hyaluronan-mediated motility receptor, also
known as RHAMM) exacerbated collagen-induced arthritis by sup-
porting cell migration and up-regulating genes involved with in-
flammation [54] and MATL1 (Mucosa associated lymphoid tissue
lymphoma translocation gene 1) was recently identified to play a cru-
cial role in the pathogenesis of RA as MATL1-deficient mice were
completely resistant to collage-induced arthritis [55]. Direct connection
to RA was not revealed for the rest of the identified informative genes
so far and it remains to be investigated how and why these features are
indicative of drug response.

There are some limitations to be addressed in this study. First, re-
moval of batch effects is not ideal which adds to the noise in the
compendium. Second, we did not fully address the association of RA
subgroup with clinical factors including age, sex, disease duration, and
antibodies against anti-cyclic citrullinated protein due to lack of com-
plete annotation for each RA sample. In addition, the compendium that
we constructed here had an inherit heterogeneity due to different tissue
sources (joints sampled). Third, a limited number of samples were
treated with other drugs except for infliximab precluded us from
making a predictive model. In general, more meta-data would be de-
sired, although this is to be expected as these studies were performed in
different clinical environments, with different procedures and goals,
which did not include their aggregation to a single compendium and
application of advanced machine learning techniques. We believe that
with the recent efforts to support medical informatics standards and the
democratization of genome-wide transcriptional profiling for arthritis
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patients will lead to cohesive datasets, which will in turn result to more
accurate and innovative insights with the application of techniques si-
milar to those described here.

Author contributions

K-J Kim, I Tagkopoulos designed the study and K-J Kim acquired the
data and performed the data analysis. I Tagkopoulos supervised all
aspects of the project. K-J Kim, M Kim, I Adamopoulos, I Tagkopoulos
contributed to the analysis, interpretation of data, and writing of the
manuscript. All authors were involved in drafting the article or revising
it critically for important intellectual content, and all authors approved
the final version to be published.

Competing financial interests
The authors have no conflicts of interest to disclose.
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.clim.2019.03.002.

References

[1] D.M. Lee, M.E. Weinblatt, Rheumatoid arthritis, Lancet 358 (2001) 903-911.

[2] J.S. Smolen, D. Aletaha, Rheumatoid arthritis therapy reappraisal: strategies, op-
portunities and challenges, Nat. Rev. Rheumatol. 11 (2015) 276-289.

[3] A.N. Burska, K. Roget, M. Blits, L. Soto Gomez, F. van de Loo, L.D. Hazelwood, et al.,
Gene expression analysis in RA: towards personalized medicine, Pharm. J. 14
(2014) 93-106.

[4] S. You, C.S. Cho, L. Lee, L. Hood, D. Hwang, W.U. Kim, A systems approach to
rheumatoid arthritis, PLoS One 7 (2012) e51508.

[5] L.G.van Baarsen, C.A. Wijbrandts, T.C. Timmer, T.C. van der Pouw Kraan, P.P. Tak,

C.L. Verweij, Synovial tissue heterogeneity in rheumatoid arthritis in relation to

disease activity and biomarkers in peripheral blood, Arthritis Rheum. 62 (2010)

1602-1607.

T. Haupl, B. Stuhlmuller, A. Grutzkau, A. Radbruch, G.R. Burmester, Does gene

expression analysis inform us in rheumatoid arthritis? Ann. Rheum. Dis. 69 (Suppl.

1) (2010) i37-i42.

[7] E.C. Arnett, S.M. Edworthy, D.A. Bloch, D.J. McShane, J.F. Fries, N.S. Cooper, et al.,
The American Rheumatism Association 1987 revised criteria for the classification of
rheumatoid arthritis, Arthritis Rheum. 31 (1988) 315-324.

[8] R. Altman, E. Asch, D. Bloch, G. Bole, D. Borenstein, K. Brandt, et al., Development
of criteria for the classification and reporting of osteoarthritis. Classification of
osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the
American Rheumatism Association, Arthritis Rheum. 29 (1986) 1039-1049.

[9] A.M. van Gestel, M.L. Prevoo, M.A. van 't Hof, M.H. van Rijswijk, L.B. van de Putte,
P.L. van Riel, Development and validation of the European League Against
Rheumatism response criteria for rheumatoid arthritis. Comparison with the pre-
liminary American College of Rheumatology and the World Health Organization/
International League Against Rheumatism Criteria, Arthritis Rheum. 39 (1996)
34-40.

[10] da W. Huang, B.T. Sherman, R.A. Lempicki, Systematic and integrative analysis of
large gene lists using DAVID bioinformatics resources, Nat. Protoc. 4 (2009) 44-57.

[11] A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette,
et al., Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles, Proc. Natl. Acad. Sci. U. S. A. 102 (2005)
15545-15550.

[12] V.K. Mootha, C.M. Lindgren, K.F. Eriksson, A. Subramanian, S. Sihag, J. Lehar,
et al., PGC-lalpha-responsive genes involved in oxidative phosphorylation are co-
ordinately downregulated in human diabetes, Nat. Genet. 34 (2003) 267-273.

[13] D. Merico, R. Isserlin, O. Stueker, A. Emili, G.D. Bader, Enrichment map: a network-
based method for gene-set enrichment visualization and interpretation, PLoS One 5
(2010) e13984.

[14] C. Stark, B.J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, M. Tyers, BioGRID:
a general repository for interaction datasets, Nucleic Acids Res. 34 (2006)
D535-D539.

[15] S. Peri, J.D. Navarro, T.Z. Kristiansen, R. Amanchy, V. Surendranath,

B. Muthusamy, et al., Human protein reference database as a discovery resource for
proteomics, Nucleic Acids Res. 32 (2004) D497-D501.

[16] S. Orchard, M. Ammari, B. Aranda, L. Breuza, L. Briganti, F. Broackes-Carter, et al.,
The MiIntAct project-IntAct as a common curation platform for 11 molecular in-
teraction databases, Nucleic Acids Res. 42 (2014) D358-D363.

[17] A. Fabregat, K. Sidiropoulos, P. Garapati, M. Gillespie, K. Hausmann, R. Haw, et al.,
The reactome pathway knowledgebase, Nucleic Acids Res. 44 (2016) D481-D487.

[18] D. Szklarczyk, J.H. Morris, H. Cook, M. Kuhn, S. Wyder, M. Simonovic, et al., The
STRING database in 2017: quality-controlled protein-protein association networks,

[6


https://doi.org/10.1016/j.clim.2019.03.002
https://doi.org/10.1016/j.clim.2019.03.002
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0005
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0010
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0010
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0015
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0015
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0015
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0020
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0020
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0025
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0025
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0025
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0025
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0030
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0030
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0030
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0035
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0035
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0035
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0040
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0040
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0040
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0040
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0045
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0045
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0045
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0045
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0045
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0045
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0050
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0050
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0055
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0055
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0055
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0055
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0060
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0060
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0060
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0065
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0065
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0065
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0070
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0070
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0070
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0075
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0075
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0075
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0080
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0080
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0080
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0085
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0085
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0090
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0090

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]

[28]

[29]
[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

. Kim, et al.

made broadly accessible, Nucleic Acids Res. 45 (2017) D362-d8.

D. Koschutzki, F. Schreiber, Centrality analysis methods for biological networks and
their application to gene regulatory networks, Gene Regul. Syst. Biol. 2 (2008)
193-201.

J.P. Brunet, P. Tamayo, T.R. Golub, J.P. Mesirov, Metagenes and molecular pattern
discovery using matrix factorization, Proc. Natl. Acad. Sci. U. S. A. 101 (2004)
4164-4169.

S. You, B.S. Knudsen, N. Erho, M. Alshalalfa, M. Takhar, H. Al-Deen Ashab, et al.,
Integrated classification of prostate cancer reveals a novel luminal subtype with
poor outcome, Cancer Res. 76 (2016) 4948-4958.

L.V.D. Maaten, G.E. Hinton, Visualizing Data using t-SNE, J. Mach. Learn. Res. 9
(2008) 2579-2605.

D.M. Levine, D.R. Haynor, J.C. Castle, S.B. Stepaniants, M. Pellegrini, M. Mao, et al.,
Pathway and gene-set activation measurement from mRNA expression data: the
tissue distribution of human pathways, Genome Biol. 7 (2006) R93.

M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, K. Morishima, KEGG: new per-
spectives on genomes, pathways, diseases and drugs, Nucleic Acids Res. 45 (2017)
D353-d61.

G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical
Learning, Springer, 2013.

M. Kuhn, K. Johnson, Applied Predictive Modeling, Springer, 2013.

T. Saito, M. Rehmsmeier, The precision-recall plot is more informative than the
ROC plot when evaluating binary classifiers on imbalanced datasets, PLoS One 10
(2015) e0118432.

K.H. Brodersen, C.S. Ong, K.E. Stephan, J.M. Buhmann, The Balanced Accuracy and
its Posterior Distribution. 2010 20th International Conference on Pattern
Recognition, (2010), pp. 3121-3124.

K. Yamamoto, Y. Okada, A. Suzuki, Y. Kochi, Genetics of rheumatoid arthritis in
Asia—present and future, Nat. Rev. Rheumatol. 11 (2015) 375-379.

M.I. Koenders, W.B. van den Berg, Novel therapeutic targets in rheumatoid arthritis,
Trends Pharmacol. Sci. 36 (2015) 189-195.

V. Kelly, M. Genovese, Novel small molecule therapeutics in rheumatoid arthritis,
Rheumatology (Oxford) 52 (2013) 1155-1162.

J. Pinero, A. Bravo, N. Queralt-Rosinach, A. Gutierrez-Sacristan, J. Deu-Pons,

E. Centeno, et al., DisGeNET: a comprehensive platform integrating information on
human disease-associated genes and variants, Nucleic Acids Res. 45 (2017)
D833-d9.

E. Choy, Understanding the dynamics: pathways involved in the pathogenesis of
rheumatoid arthritis, Rheumatology (Oxford) 51 (Suppl. 5) (2012) v3-11.

S. Rabelo Fde, L.M. da Mota, R.A. Lima, F.A. Lima, G.B. Barra, J.F. de Carvalho,
et al., The Wnt signaling pathway and rheumatoid arthritis, Autoimmun. Rev. 9
(2010) 207-210.

J.S. Smolen, D. Aletaha, A. Barton, G.R. Burmester, P. Emery, G.S. Firestein, et al.,
Rheumatoid arthritis, Nat. Rev. Dis. Primers 4 (2018) 18001.

C.G. Miao, Y.Y. Yang, X. He, X.F. Li, C. Huang, Y. Huang, et al., Wnt signaling
pathway in rheumatoid arthritis, with special emphasis on the different roles in
synovial inflammation and bone remodeling, Cell. Signal. 25 (2013) 2069-2078.
R.M. Pope, Apoptosis as a therapeutic tool in rheumatoid arthritis, Nat. Rev.
Immunol. 2 (2002) 527-535.

M.D. Smith, J.G. Walker, Apoptosis a relevant therapeutic target in rheumatoid
arthritis? Rheumatology (Oxford) 43 (2004) 405-407.

J. Ducreux, P. Durez, C. Galant, A. Nzeusseu Toukap, B. Van den Eynde,

F.A. Houssiau, et al., Global molecular effects of tocilizumab therapy in rheumatoid

10

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Clinical Immunology 202 (2019) 1-10

arthritis synovium, Arthritis Rheum. 66 (2014) 15-23.

J. Lindberg, C.A. Wijbrandts, L.G. van Baarsen, G. Nader, L. Klareskog, A. Catrina,
et al., The gene expression profile in the synovium as a predictor of the clinical
response to infliximab treatment in rheumatoid arthritis, PLoS One 5 (2010)
el1310.

T.C. van der Pouw Kraan, F.A. van Gaalen, P.V. Kasperkovitz, N.L. Verbeet,

T.J. Smeets, M.C. Kraan, et al., Rheumatoid arthritis is a heterogeneous disease:
evidence for differences in the activation of the STAT-1 pathway between rheu-
matoid tissues, Arthritis Rheum. 48 (2003) 2132-2145.

S. Yoshida, F. Arakawa, F. Higuchi, Y. Ishibashi, M. Goto, Y. Sugita, et al., Gene
expression analysis of rheumatoid arthritis synovial lining regions by cDNA mi-
croarray combined with laser microdissection: up-regulation of inflammation-as-
sociated STAT1, IRF1, CXCL9, CXCL10, and CCL5, Scand. J. Rheumatol. 41 (2012)
170-179.

P.C. Taylor, E.C. Keystone, D. van der Heijde, M.E. Weinblatt, L. Del Carmen
Morales, J. Reyes Gonzaga, et al., Baricitinib versus placebo or adalimumab in
rheumatoid arthritis, N. Engl. J. Med. 376 (2017) 652-662.

D. Woetzel, R. Huber, P. Kupfer, D. Pohlers, M. Pfaff, D. Driesch, et al.,
Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-
based rule set generation, Arthritis Res. Ther. 16 (2014) R84.

J.J. Miner, H.X. Aw Yeang, J.M. Fox, S. Taffner, O.N. Malkova, S.T. Oh, et al.,
Chikungunya viral arthritis in the United States: a mimic of seronegative rheuma-
toid arthritis, Arthritis Rheum. 67 (2015) 1214-1220.

H.L Nakaya, J. Gardner, Y.S. Poo, L. Major, B. Pulendran, A. Suhrbier, Gene pro-
filing of Chikungunya virus arthritis in a mouse model reveals significant overlap
with rheumatoid arthritis, Arthritis Rheum. 64 (2012) 3553-3563.

R.M. Thurlings, M. Boumans, J. Tekstra, J.A. van Roon, K. Vos, D.M. van Westing,
et al., Relationship between the type I interferon signature and the response to
rituximab in rheumatoid arthritis patients, Arthritis Rheum. 62 (2010) 3607-3614.
T.C. van der Pouw Kraan, C.A. Wijbrandts, L.G. van Baarsen, A.E. Voskuyl,

F. Rustenburg, J.M. Baggen, et al., Rheumatoid arthritis subtypes identified by
genomic profiling of peripheral blood cells: assignment of a type I interferon sig-
nature in a subpopulation of patients, Ann. Rheum. Dis. 66 (2007) 1008-1014.
Y.A. Kim, S. Wuchty, T.M. Przytycka, Identifying causal genes and dysregulated
pathways in complex diseases, PLoS Comput. Biol. 7 (2011) e1001095.

N. Bottini, G.S. Firestein, Duality of fibroblast-like synoviocytes in RA: passive re-
sponders and imprinted aggressors, Nat. Rev. Rheumatol. 9 (2013) 24-33.

J.J. Haringman, D.M. Gerlag, A.H. Zwinderman, T.J. Smeets, M.C. Kraan, D. Baeten,
et al., Synovial tissue macrophages: a sensitive biomarker for response to treatment
in patients with rheumatoid arthritis, Ann. Rheum. Dis. 64 (2005) 834-838.

L. Martinez-Lostao, F. Garcia-Alvarez, G. Basanez, E. Alegre-Aguaron, P. Desportes,
L. Larrad, et al., Liposome-bound APO2L/TRAIL is an effective treatment in a rabbit
model of rheumatoid arthritis, Arthritis Rheum. 62 (2010) 2272-2282.

Z. Obermeyer, E.J. Emanuel, Predicting the future - big data, machine learning, and
clinical medicine, N. Engl. J. Med. 375 (2016) 1216-1219.

S. Nedvetzki, E. Gonen, N. Assayag, R. Reich, R.O. Williams, R.L. Thurmond, et al.,
RHAMM, a receptor for hyaluronan-mediated motility, compensates for CD44 in
inflamed CD44-knockout mice: a different interpretation of redundancy, Proc. Natl.
Acad. Sci. U. S. A. 101 (2004) 18081-18086.

E. Gilis, J. Staalj, R. Beyaert, D. Elewaut, The Paracaspase MALT1 plays a central
role in the pathogenesis of rheumatoid arthritis [abstract], Arthritis Rheum. 69
(2017).


http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0090
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0095
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0095
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0095
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0100
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0100
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0100
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0105
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0105
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0105
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0110
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0110
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0115
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0115
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0115
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0120
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0120
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0120
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0125
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0125
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0130
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0135
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0135
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0135
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0140
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0140
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0140
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0145
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0145
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0150
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0150
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0155
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0155
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0160
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0160
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0160
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0160
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0165
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0165
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0170
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0170
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0170
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0175
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0175
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0180
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0180
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0180
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0185
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0185
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0190
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0190
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0195
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0195
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0195
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0200
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0200
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0200
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0200
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0205
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0205
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0205
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0205
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0210
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0210
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0210
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0210
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0210
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0215
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0215
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0215
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0220
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0220
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0220
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0225
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0225
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0225
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0230
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0230
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0230
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0235
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0235
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0235
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0240
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0240
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0240
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0240
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0245
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0245
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0250
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0250
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0255
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0255
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0255
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0260
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0260
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0260
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0265
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0265
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0270
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0270
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0270
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0270
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0275
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0275
http://refhub.elsevier.com/S1521-6616(18)30733-2/rf0275

	Compendium of synovial signatures identifies pathologic characteristics for predicting treatment response in rheumatoid arthritis patients
	Introduction
	Methods
	Systematic search and data collection
	Data normalization and removal of batch effects
	The RA compendium
	Filtering of differentially expressed genes
	Functional enrichment analysis
	Gene set enrichment analysis
	Construction of protein-protein interaction network
	Non-negative matrix factorization and determination of the optimal number of clusters
	Scoring of pathway activation
	Supervised learning analyses for the prediction of drug responsiveness
	Statistical analysis

	Results
	The RA transcriptomics compendium
	Enriched biological processes and protein-to-protein interaction network
	Identification and characterization of molecular subgroups
	Clinical implication of the 3 molecular subgroups
	Toward a predictor of drug response

	Discussion
	Author contributions
	Competing financial interests
	Supplementary data
	References




