Benzalkonium chlorides: Uses, regulatory status, and microbial resistance

Beatriz Merchel Piovesan Pereira¹, Ilias Tagkopoulos²*

1. Microbiology Graduate Group, University of California, Davis, 95616, USA
2. Department of Computer Science and Genome Center, University of California, Davis, 95616, USA
*Corresponding author

Abstract

Benzalkonium chlorides (BACs) are chemicals with widespread applications due to their broad-spectrum antimicrobial property against bacteria, fungi, and virus. This review provides an overview of the market for BACs, as well as regulatory measures and available data on safety, toxicity, and environmental contamination. We focus on the effect of frequent exposure of microbial communities to BACs, and the potential for cross-resistant phenotypes to emerge. Towards this goal, we review BACs concentrations in consumer products, correlate with the emergence of tolerance in microbial populations and associated risk potential. Our analysis suggests that the ubiquitous and frequent use of BACs in commercial products can generate selective environments that favor microbial phenotypes potentially cross-resistant to a variety of compounds. An analysis of benefits versus risks should be the guidepost for regulatory actions regarding compounds such as BACs.

Keywords
Benzalkonium chlorides, BACs, Alkyl dimethyl benzyl ammonium chlorides, QACs, Resistance, Antiseptic, Disinfectant

Widespread use in a multi-billion-dollar market

Benzalkonium chlorides (BACs), also known as alkyl dimethyl benzyl ammonium chlorides, alkyl dimethyl (phenylmethyl) quaternary ammonium chlorides, ammonium alkyl dimethyl (phenylmethyl) chlorides or ammonium alkyl dimethyl benzyl chlorides, are a class of
quaternary ammonium compounds (QACs) (Figure 1A). They are usually commercialized as a mixture of compounds with different lengths for the alkyl chain, ranging from C8 to C18, with higher biocide activity for C12 and C14 derivatives (1).

BACs were reported for the first time in 1935 by Gerhard Domagk, gaining the market as zephiran chlorides, and marketed as promising and superior disinfectant and antiseptics (2). In 1947 the first product containing BACs was registered with the EPA in the US (3). Since then, they have been used in a wide variety of products, both prescription and over-the-counter. Applications range from domestic to agricultural, industrial and clinical (Figure 1B). Domestic applications include fabric softeners (4), personal hygiene and cosmetic products such as shampoos, conditioners, and body lotions (5), as well as ophthalmic solutions and medications that use the nasal route of delivery (6). BACs are also among the most common active ingredients in disinfectants (4), used in residential, industrial (7), agricultural and clinical settings. Additional registered uses for BACs in the United States include applications on indoor and outdoor surfaces (walls, floors, toilets, etc.), agricultural tools and vehicles, humidifiers, water storage tanks, products for use in residential and commercial pools, decorative ponds and fountains, water lines and systems, pulp and paper products, and wood preservation (3). The recommended or allowed concentrations of BACs in different products vary considerably according to the application (Table 1). With perhaps the exception of countries which adopted stricter regulations towards BACs use, discussed in the next section, the potential use of BACs is likely on the rise. The global market for disinfectants alone, which include BACs, is expected to grow over 6% from 2016 and reach over 8 billion dollars by 2021 (8).

**Current regulation**

In Europe, the European Commission (EC) is involved in the regulation of BACs. Recent rules in the European market included a change in the maximum residual levels of BACs allowed in food products from 0.5 mg/kg to 0.1 mg/kg, values which will undergo an additional review by the end of 2019 (9). Additionally, recent changes in legislation, by Decision (EU) 2016/1950, and the Biocidal Products Regulation (EU) No 528/2012 (the BPR) (10, 11) meant that BACs are no longer approved for use in several biocidal products, such as consumer hand and body wash antiseptics, which contrasts with current legislation in the United States.
In the United States, the Environmental Protection Agency (EPA) and the Food and Drug Administration (FDA) share the role of regulating BACs. Such agencies regularly update regulations based on current scientific data, occasionally limiting the use of compounds found not to be safe or effective. Final determinations, however, can be delayed by requests from the industry sector that commercializes such products. As an example, the FDA has recently published three proposed and final decisions regarding the use of chemicals as consumer hand rub antiseptics, consumer hand and body wash antiseptics, and healthcare antiseptics (12–14). The rules banned specific biocides, such as triclosan, or added additional and stricter regulatory approvals for several others, such as chlorhexidine, regarding the applications mentioned above. In all instances, however, BACs were excluded from the decisions and granted deferral letters as requested by manufacturers. The decisions granted manufactures with extra time to provide data to fill gaps related to safety and efficacy. Since 2015, letters and recommendations have been moving back and forth between the FDA and manufacturers and their representatives, such as the American Cleaning Institute, Lonza America, and Inc. Henkel Consumer Good Inc (15–19). Decisions to postpone any action regarding the regulation of BACs were taken based on the affirmation of lack of sufficient data in the literature. Yet, multiple researchers have studied safety aspects of BACs over the years, which include data on the toxicity to humans and the environment, as we discuss next.

Toxicity to humans

The toxicity of BACs to humans and other animals has been described in the literature, even though discordant conclusions arise from differences in experimental conditions. As reviewed elsewhere (20) BACs are known skin irritants, with occasional, rarer, reports as allergens (skin sensitizers). Regarding acute toxicology data, BACs are classified by the EPA as toxicity category II by the oral and inhalation routes and toxicity category III via the dermal route (3). They are also considered to be highly irritating to the eyes and skin (toxicity category I) (3). Small but significant genotoxic effects in both plant and mammalian cells were observed in vitro for BACs concentration as low as 1 mg/L, which is lower than those reported to be found in the environment (21). Considerable cell toxicity was observed in vitro for human ocular cells exposed to BACs concentrations as low as 0.0001% (22).
In contrast, a few reports in the literature found BACs to be considered safe. A report from 2006 by the EPA did not recognize BACs as being carcinogenic, mutagenic or genotoxic (3). Regarding their addition to intranasal products, a review of 18 studies from the literature revealed no major safety concerns when BACs were used in concentrations ranging from 0.00045% to 0.1% (23). A recent review of BACs safety in cosmetic products (5) regarded their use as possibly safe, based on calculations of the margin of safety (MOS), a formula which considered the concentration of BACs in products, use frequency and amount, and estimated parameters such as no-observed-adverse-effect-level (NOAEL) and dermal absorption ratios.

For the specific application of ophthalmological solutions, a study sponsored by Alcon Laboratories concluded that there was no safety difference between those with or without the addition of BACs (24), even though multiple researchers reported pathological effects when ophthalmological solutions containing BACs as a preservative were used, compared to preservative-free solutions (25, 26). Multiple reports of BACs toxicity for such application have even motivated the development of preservative-free ocular solutions (27). Labeling recommendations from the European Commission for medicinal products containing BACs have also recognized eye irritation as a toxic effect from BACs (28).

In summary, most studies and governmental agencies agree that BACs are not innocuous substances, even when used in small concentrations (3, 20–22, 25, 26, 28). Safety concerns regarding their use are frequently associated to long-term contact product use, such as in preservatives in medications used by glaucoma patients, which can be chronically exposed to BACs (22, 25, 26, 29).

Environmental contamination

In a 2006 report, the EPA recognized the toxicity of BACs to the aquatic environment and its inhabitants, such as fish, oysters, shrimp, and invertebrates, advising against the release of BACs into lakes, oceans, or other waters (3). Since then, their toxicity to aquatic organisms, as well as other animals, has been well established by several research groups (30, 31). Despite that, BACs have been detected in wastewater effluents and other environments (Table 1).

Data regarding the detection of BACs in the environment is sparse in the literature, and recent measurements are lacking. BACs were reported in wastewater effluents from hospitals,
reaching concentrations on the mg/L range (32–34). Other effluents such as from laundry, dairy, community pools, also had the presence of BACs (32, 33) with varying concentrations that were generally lower than those originated from hospitals. Typical wastewater treatment plants are not designed to treat QACs contaminants, resulting in the release of at least a portion of them into the environment, as micropollutants (35). Concentrations varying in the ranges of µg/L or µg/g were found in ground and reclaimed water (36), as well as soil samples (37). BACs were also detected in up to 3.5% of over 4,000 food samples analyzed by the European Food Safety Authority, or EFSA (38).

From all the QACs tested by different research groups, BACs, mainly C12, C14, and C16, were found in higher concentrations compared to other QACs (32, 33). The high incidence of BACs could be attributed, at least in part, to their popularity in various applications, from consumer products such as eye drops, shampoos, mosquito insecticides, to disinfectants and antiseptics, used in hospitals and food industries. Whether the widespread use of these compounds, a lack of proper disposal or a combination of both contributed to the observed incidence in the environment, is unknown. We estimate that BAC disposal in the environment is still considerable, especially in countries that have less restrictive legislation such as the US. Deeper investigations, however, are required to establish the current levels of BACs in the environment, as well as the potential links for the development of resistant microbial strains, which we discuss next.

Microbial tolerance and resistance

The use of BACs for multiple applications, many of which unavoidably result in the generation and release of residual biocide, can result in the presence of environments in which there is a selection pressure over microbes to evolve resistance to such chemicals (35). The capacity of bacteria to survive and thrive in BACs has been demonstrated by tracking outbreaks, usually associated with misuse or improper dilution and storage of disinfectants and antiseptics’ solutions (39). In fact, multiple outbreaks were associated with BACs throughout four decades (39), motivating a series of recommendations to discontinue its use as an antiseptic (40, 41).

Concerns about the use of BACs as antiseptics are not novel, and researchers have observed resistant strains, capable of surviving in BACs solutions (0.1 – 0.4%), as early as the
It is known that bacteria can adapt and increase its tolerance to stressful chemicals and such phenomena has been shown repeatedly for BACs. Frequently, the adaptive mutations that select for increased tolerance or resistance are stable at a population level and can be still observed for evolved strains even after the selection pressure has been lifted (46). Even though the reported concentrations vary depending on the study and the bacteria genera (Table 1), it has been demonstrated that bacteria can evolve to survive to BACs concentrations similar to those found in the environment and consumer products (Table 1).

It is important to highlight that the terms “tolerance” and “resistance” have been used interchangeably, especially when related to biocides, which could lead to misinterpretation of data (47, 48). Resistance is broadly understood as: “insusceptibility of a microorganism to a particular treatment under a particular set of conditions” (47, 48). Multiple researchers defined resistance based solely on increase of the minimal inhibitory concentration (MIC) (49, 50). The term “tolerance” has been used on several distinct occasions. Tolerant strains were defined as those in which the antimicrobial’s MIC for them did not increase, but the strain was able to survive killing by, for example, reducing growth (51). Tolerant strains were also defined as those in which the antimicrobial’s MIC for them increased compared to controls (48). We believe that the broad term “decrease in susceptibility” is often more appropriate to describe the observed increases in MIC for biocides, including the following examples.

Methicillin-resistant *Staphylococcus aureus* (MRSA) strains were evolved in BACs (52), doubling the MIC of BACs, from 5 to 10 mg/L, after a period of adaptation. The MIC of BACs increased fourfold for *Campylobacter coli* after exposure to the chemical for 15 days (46). *Escherichia coli* K-12 exposed to increasing concentrations of BACs was able to survive in a concentration of 92 mg/L of BACs, which was eight times higher than the parent strain (53). Another study showed that the MIC of BACs changed from 4 to 256 mg/L for *Salmonella* serovar Virchow and reached over 1000 mg/L for *E. coli* O157 (54). The leading food-borne pathogen in the United States, *Listeria monocytogenes*, is also capable of decreasing its susceptibility to BACs. Three different strains (H7550, SK2802 and J0161) of *L. monocytogenes* from outbreaks and disease cases were exposed to BACs and isolates with up to threelfold increases (10 to 30 mg/L) in the MIC of BACs were obtained for all strains (55).

The *Pseudomonas spp.* strains can naturally withstand the highest concentrations of BACs. *Pseudomonas aeruginosa* survives up to 1600 and 1200mg/L of BACs, with or without a
previous adaptation to the chemical, respectively (56). The MIC of BACs for the isolated strain
*Pseudomonas* sp. BIOMIG1 was 1024 mg/L (57). The higher recalcitrance of *Pseudomonas* spp.
may explain why, after exposing complex microbial communities to BACs, there was an
enrichment of *Pseudomonas* species, with a decrease of microbial diversity (58, 59). In another
study, *P. aeruginosa* NCIMB 10421 was cultivated in continuous culture, and the BACs
concentration was progressively increased for about 30 days. The MIC of BACs increased from
25 mg/L to over 350 mg/L, and the adapted strain had higher fitness when competed with the
parent strain in the presence of BACs, especially with magnesium depletion and the presence of
glucose in the media (60).

A recent study has questioned the use of aqueous solutions of BACs to determine its
activity against microorganisms, demonstrating that BACs in real-use formulations (with
surfactants and chelating agents) is more effective to control microbial growth (59). Despite this
finding, strains with decreased susceptibility to BACs can not only develop and be selected for in
controlled laboratory conditions but have also been isolated directly from real-case scenarios,
environments in which BACs is frequently used as a biocide. Strains of the pathogen *L.
monocytogenes* isolated from diverse environments such as food processing plants, food
products, patients and animals, were reported as having decreased susceptibility to BACs. Such
strains ranged from 8% (49) and 10% (50) up to 40% (61) and 45% (62) of the total number of
isolates in these environments.

**Microbial mechanisms of tolerance and resistance**

The mode of action of QACs, including BACs, involve the perturbation and disruption of
the membrane bilayers by the alkyl chains, and disruption of charge distribution of the
membrane by the charged nitrogen (63). Accordingly, susceptibility to BACs may emerge
through a combination of mechanisms (56), many of those related to the cell
membrane. The mechanisms proposed in the literature include changes in the overall membrane
composition, downregulation of porins, overexpression or modification of efflux pumps,
horizontal gene transfer of transposon elements and stress factors, biofilm formation and
biodegradation (Figure 1B).
Changes in the membrane composition have long been associated with decreased susceptibility to BACs (64, 65). Resistant strains of *P. aeruginosa* were shown to have different phospholipid and fatty acids composition compared to a susceptible strain (64). Other work has demonstrated that exposure of *Bacillus cereus* to BACs induced genes involved in fatty acid metabolism and caused changes in the fatty acid composition of the membrane (66). The authors, however, did not evaluate whether exposed strains exhibited a tolerant phenotype. A strain of *E. coli* with reduced susceptibility to BACs was shown to have a lipopolysaccharide composition diverse from the susceptible strain (64). Recently, it was suggested that *Pseudomonas* strains could partially adapt to BACs by stabilizing the membrane charge, through the increase of polyamine synthesis genes expression and mutations in *pmrB* (56).

The reduced influx of BACs has been suggested to collaborate to decreased susceptibility to the biocide. Since adsorption of QACs is believed to occur through porins (63), decreased susceptibility could be achieved, in theory, by downregulation of porins. In accordance, the downregulation of genes for multiple porins has been associated with *Pseudomonas* (56, 67) and *E.coli* (53) strains less susceptible to BACs. A lower level of the porin OmpF in the *E. coli* membrane decreased the strain susceptibility to BACs (64). A causal relationship between a disinfectant product containing BACs and the downregulation of porins was demonstrated for *Mycobacterium smegmatis*: knockout mutants for Msp porins were less susceptible to the biocide compared to the wild-type (68). The use of a disinfectant formulation by the authors, however, limits the extent to which the observed effect can be attributed to BACs, other components of the formula, or the mixture. Further studies are required to reinforce the link between tolerance to BACs and the downregulation of porins.

The presence or upregulation of certain families of efflux pumps has been associated with multidrug resistance and decreased susceptibility to BACs, across several genera of bacteria. Resistance via increased efflux lowers the concentration of biocide inside the cell, allowing the bacteria to survive against higher environmental concentrations of the chemical. One such case is the Qac proteins, a group of multidrug efflux proteins frequently associated with resistance to BACs (69). In the food-borne pathogen *L. monocytogenes*, the efflux pump Mrdl (70) and the efflux pump EmrE (71) have been associated with resistance to BACs. In isolates of *L. monocytogenes*, the susceptibility to BACs and antimicrobials could be restored when the efflux inhibitor was added to the media containing a previously adapted and resistant strain. This
suggested at least a partial role of efflux pumps for resistance to BACs in this organism (55). The efflux protein MdfA contributed to increased resistance to BACs in *E. coli* (72). For the plant pathogen *Pseudomonas syringae*, the RND-type pump MexAB-OprM knockout mutant showed increased sensitivity to BACs (73). Another efflux pump, the PmpM of the MATE family, from *P. aeruginosa*, contributed to decreased susceptibility to BACs when expressed in a plasmid in *E. coli* (74). Accordingly, the exposure of *Pseudomonas* strains to BACs for a long time resulted in the overexpression of multidrug efflux pump genes (56). Mutations in the *nfxB*, a regulator for the Mex efflux system, as well as overexpression of both MexAB-OprM and MexCD-OprJ efflux systems and downregulation of *mexR*, a repressor of the Mex system, was also correlated to decreased sensitivity to BACs in *P. aeruginosa* (60).

Resistance elements like efflux pumps often appear associated with other genes, such as mobile elements and transposases (75), which contributes to their dissemination in bacterial populations and maintenance of tolerant and resistant phenotypes. The transposon Tn6188 was associated with strains of *L. monocytogenes* with increased tolerance to BACs. It included three transposases and a protein which was similar to Smr, EmrE, and Qac efflux proteins (75). Strains of *L. monocytogenes* responsible for outbreaks in Canada had a genomic island containing multiple resistance, stress response and virulence-associated genes (76), which included an efflux pump involved in resistance to BACs (71). Successful horizontal gene transfer of resistance-associated genes from non-pathogenic BACs-resistant *Listeria innocua* and *Listeria welshimeri* to the pathogenic *L. monocytogenes* does occur, and suggests that more common, non-pathogenic strains frequently exposed to the biocide in food-processing plants can act as resistance reservoirs (77).

Factors such as the presence of biofilms can affect the biocide ability to control and eliminate microorganisms (78). Biofilms are communities of single or multi-species microorganisms attached to solid surfaces, surrounded by their secreted exopolysaccharide matrix. Biofilm formation represents one of the mechanisms of resistance and tolerance explored by bacteria to avoid and protect themselves against stressful environments (79). Bacterial communities in biofilms have increased ability to survive antiseptics and disinfectants, such as BACs, compared to planktonic cells (80). Exposure of *Salmonella enterica* to 0.02% of BACs (2-fold higher than the MIC for planktonic cells) for between 10 and 90 minutes, though reducing the cell number, failed to eradicate the biofilm (79).
Tolerance to BACs can be greater for multi-species biofilms compared to single-species, as it was the case for a dual species of biofilm with *L. monocytogenes* and *Pseudomonas putida* (78, 81). The latter result can be partially explained by the selection pressure for the strain with higher intrinsic resistance to the biocide (78). As mentioned before, *Pseudomonas* species naturally have a better capacity to survive in higher concentrations of BACs (56, 57). Their presence in the biofilm community could contribute to the increased tolerance compared to other single-species.

The cases above demonstrate the better capacity of both single cells and multi-species to survive the presence of biocides when in biofilms, versus planktonic cells. In addition, the exposure to the biocide can occasionally increase biofilm formation by bacteria (82–84). Continuous exposure of bacteria to BACs resulted in thicker biofilms, as observed with SEM (84). Strains of *E. coli* isolated from the dairy industry which were less susceptible to BACs and antibiotics also had an increased ability to form biofilms (82). The susceptible strains became strong biofilm formers as well, after a period of adaptation (exposure) to BACs (82). Exposure to BACs induced biofilm formation by *Staphylococcus epidermidis* CIP53124, although the same effect was not observed for other species tested (83).

Lastly, some microbial communities and species such as *Pseudomonas spp.* are capable of degrading BACs, converting them into less toxic chemicals and utilizing them as secondary substrates and energy sources (58, 85). Degradation of BACs by dealkylation decreases its toxicity to microorganisms (86). A study of microbial communities suggested that the *Pseudomonas* sp. BIOMIG1 was responsible for biodegradation of BACs, possibly via dioxygenase (57). Degradation of BACs under nitrate-reducing conditions in the presence of a methanogenic culture obtained from an anaerobic digester has also been demonstrated (87). The transformation was determined to be abiotic, by a nucleophilic substitution with nitrite that generated benzonitrile (87).

Given the mode of action of BACs through membrane disruption (63) and the above-described general mechanisms of bacterial response by membrane modification (64, 65), overexpression of multidrug efflux pumps (56, 70–74), and biofilm formation (78, 79, 81), we expect some level of cross-resistance to other antimicrobials, which is described next.

**Cross-resistance to antibiotics**
Cross-resistance is the phenomenon in which exposure to one chemical grants an advantage for survival in a distinct chemical (44, 45). Cross-resistance between antiseptics, disinfectants, and antibiotics has been thoroughly described in the literature, including cases for BACs.

The antibiotics oxacillin, cefazolin, and ofloxacin had a higher MICs in Methicillin resistant *S. aureus* (MRSA) strains evolved in the presence of BACs (52). MRSA non-adapted to BACs were already resistant to ofloxacin as defined by EUCAST standards (88), and the MIC of such antibiotic increased up to four fold for the adapted strains (52). Similar results were observed with *E. coli* (53, 54, 89). The laboratory strain *E. coli* K-12 adapted to increasing concentrations of BACs. This resulted in several antibiotics such as ampicillin, ciprofloxacin, and nalidixic acid increasing MIC on such strain (53). MICs for multiple antibiotics also increased after adaptation to BACs for the pathogen strain *E. coli* O157 (54), and the same was observed for *E. coli* ATCC 11775 and DSM 682 (89). In some cases, *E. coli* adapted to BACs became resistant to antibiotics as defined by EUCAST (88), such as chloramphenicol (54, 89) and ampicillin (89). The MICs of multiple antibiotics also increased after adaptation to BACs for the bacteria *Salmonella* serovar Virchow (54). Such strain became resistant to amoxicillin as defined by EUCAST (88) after exposure to BACs. *L. monocytogenes* strains adapted to BACs showed decreased sensitivities to both ciprofloxacin and gentamicin (55). *P. aeruginosa* evolved in the presence of BACs in continuous culture, on the other hand, exhibited varied sensitivities to antibiotics. The adapted strain PA-29 was less sensitive to ciprofloxacin but more sensitive to minocycline, which is an antibiotic similar to tetracycline (60). The authors believed that the increased sensitivity to minocycline was due to a decrease in the expression of the MexXY-OprM efflux pump system observed for the adapted strain (60) which plays a role in the resistance to an analogue of minocycline (90). They did not confirm this hypothesis, however.

Besides isolated strains, evidence of cross-resistance between BACs and antibiotics has been shown for microbial communities. Exposure of complex microbial communities to BACs, not only decreased the overall diversity of the population, but also resulted in decreased susceptibility to three clinically relevant antibiotics: penicillin, tetracycline, and ciprofloxacin (58).
Evidence of cross-resistance between BACs and antibiotics is not exclusively limited to controlled laboratory experiments and strains. Following the isolation of S. aureus strains from patients, the MIC of BACs increased for over 100 isolates, which corresponded to approximately half of the isolates. BACs-resistant isolates, harboring plasmids with qacA/B genes, were also less sensitive to multiple antibiotics, compared to BACs-sensitive ones. The incidence of qac and β-lactamase bla genes in the same plasmids provided strong evidence of a linkage between the selection pressure for resistance to disinfectants such as BACs and antibiotics such as penicillin (91). A similar association occurred for over 50 isolates of the carbapenem-resistant Acinetobacter baumannii. Strains obtained from four different hospitals had a high prevalence of both qac and bla genes (92).

In contrast, a study conducted by the Unilever group (93) questioned the correlation between biocide use and cross-resistance to antibiotics for P. aeruginosa. Their statistical analysis revealed a stronger link between biocide and antibiotic susceptibility between strains isolated from clinical settings compared to industrial settings, which made the authors conclude that misuse of antibiotics, and not disinfectants, would be driving the results. Though interesting, additional studies would be necessary to demonstrate such a conclusion. It is also not clear whether such a correlation would hold for other bacterial species.

The exposure and adaptation to BACs can result in decreased susceptibility to several clinically relevant antibiotics in some species (52, 54, 55, 58, 89, 91), but not all, and several studies have also reported the opposite result, i.e., increased susceptibility to antibiotics (60, 94, 95). Most studies do not report whether the observed increases in MIC for the antibiotics are within the definition of resistance according to clinical standards (88, 96). Such fact often motivates questioning for the relevance of such studies (48, 93). However, an increase in MIC by itself demonstrates the existence of a cross-resistance effect and should not be ignored. Researchers showed that bacteria merely tolerant to antibiotics can develop resistance to them faster (51). The ability of bacteria to survive the presence of the antibiotics, even before the MIC has reached clinical standards, helps to keep and to accumulate mutations that can eventually result in the emergence of strains resistant to the antibiotics (51).

Conclusion
This review of the literature explored the data currently available on the potential implications of BACs to human safety and the environment in general. There is evidence that the continuous use of biocides and their release to the environment in sub-inhibitory concentrations may lead to the emergence of tolerant, resistant and cross-resistant microbial strains, even though there are occasional controversial reports in the literature. Given the reported BACs’ side-effects, we believe that a thorough analysis of benefits versus risks should be the guidepost for future regulatory and manufacturing use of the compound. Based on the analysis presented here, we have a few recommendations.

We propose restrictions for BACs use in consumer products. Currently, the Centers for Disease Control and Prevention (CDC) recommends (97), and the FDA endorses (98), the use of only water and plain soap by regular consumers (which do not include professionals in healthcare settings). Despite that, BACs are still commercialized in over-the-counter antimicrobial soaps in the United States. The FDA has recently regulated other chemicals such as triclosan and chlorhexidine, postponing any decisions regarding the use of BACs (12, 13).

Additionally, updated data regarding the presence of BACs in the environment, water and soil, is required to determine the need for monitoring such compound and establishing a baseline of its concentration in various environments. Based on the available data, bacteria can survive BACs concentrations found in the environment (Table 1), and cross-resistance between BACs and antibiotics has been reported (52–55, 58, 89, 91).

Finally, we urge further research on the effect of BACs exposure – both in free form and as part of consumer products - to microbial populations and tissues, to elucidate its toxigenic and long-term potential to alter the microbial flora in both a clinical and environmental context. We still have a limited understanding of the mechanistic underpinnings and basis of adaptation and how these link to the emergence of global health challenges like antibiotic resistance. Another link that remains to be determined is the impact of BACs and QACs in general to the human microbiota of the skin, gut, and others, which are lately associated with numerous diseases and performance outcomes (99, 100).

Balancing the concentrations that effectively inhibit bacteria in products, are not toxic to users and will not leave residual pollutants after disposal is certainly challenging. Limiting the use, regulating and monitoring chemicals such as BACs is important to reduce the negative impacts for humans and the environment.
References

1. European Commission EURL-SRM. 2012. Analysis of Quaternary Ammonium Compounds (QACs) in Fruits and Vegetables using QuEChERS and LC-MS/MS.


14. Food and Drug Administration. 2016. Safety and Effectiveness of Consumer Antiseptics; Topical Antimicrobial Drug Products for Over-the-Counter Human Use; Proposed Amendment of the Tentative Final Monograph; Reopening of Administrative Record.


17. Food and Drug Administration. FDA Letter regarding Deferral of Benzalkonium Chloride.

18. Food and Drug Administration FDA CDER. Letter from CDER FDA to American Cleaning Institute.


24. Kitazawa Y, Smith P, Sasaki N, Kotake S, Bae K, Iwamoto Y. 2011. Travoprost 0.004%/timolol 0.5%-fixed combination with and without benzalkonium chloride: a


Aguayo Bonniard A, Yeung JY, Chan CC, Birt CM. 2016. Ocular surface toxicity from glaucoma topical medications and associated preservatives such as benzalkonium chloride (BAK). Expert Opin Drug Metab Toxicol 1–11.


38. European Food Safety Authority (EFSA). 2013. Evaluation of monitoring data on residues of didecyldimethylammonium chloride (DDAC) and benzalkonium chloride (BAC).


<table>
<thead>
<tr>
<th>Reported concentrations</th>
<th>Category</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>170 µg/L</td>
<td>E</td>
<td>BACs-C12 detected in wastewater treatment influents (maximum amount)</td>
<td>(101)</td>
</tr>
<tr>
<td>14.4 mg/kg</td>
<td>E</td>
<td>BACs detected in food samples (maximum amount)</td>
<td>(38)</td>
</tr>
<tr>
<td>up to 0.2 µg/L</td>
<td>E</td>
<td>groundwater and reclaimed water</td>
<td>(36)</td>
</tr>
<tr>
<td>up to 37 µg/L</td>
<td>E</td>
<td>wastewater samples</td>
<td>(102)</td>
</tr>
<tr>
<td>up to (mg/L): 2.8 for BACs-C12, 1.1 for BACs-C14, 0.027 for BACs-C16</td>
<td>E</td>
<td>wastewater sites included hospital, laundry, dairy, swimming pools, paper production</td>
<td>(33)</td>
</tr>
<tr>
<td>0.05 to 6.03 mg/L</td>
<td>E</td>
<td>effluents from European hospitals</td>
<td>(34)</td>
</tr>
<tr>
<td>1.5 mg/kg</td>
<td>E</td>
<td>sediment samples from the metropolitan region of the lower Hudson Basin</td>
<td>(37)</td>
</tr>
<tr>
<td>up to 0.17 mg/L</td>
<td>E</td>
<td>wastewater treatment plant</td>
<td>(32)</td>
</tr>
<tr>
<td>2.8 and 2.1 mg/L</td>
<td>E</td>
<td>wastewater from hospital and laundry</td>
<td>(32)</td>
</tr>
<tr>
<td>0.09−191 mg/kg</td>
<td>E</td>
<td>Municipal Sewage Sludge in China</td>
<td>(103)</td>
</tr>
<tr>
<td>0.003 - 0.02%</td>
<td>P</td>
<td>ophthalmological solutions</td>
<td>(29)</td>
</tr>
<tr>
<td>0.5 - 2%</td>
<td>P</td>
<td>hair conditioner</td>
<td>(5)</td>
</tr>
<tr>
<td>0.03 - 0.2%</td>
<td>P</td>
<td>zephiran chlorides recommended concentrations after dilution of 17% product concentrate</td>
<td>(104)</td>
</tr>
<tr>
<td>200 ppm</td>
<td>P</td>
<td>mosquitocide</td>
<td>(3)</td>
</tr>
<tr>
<td>200 - 400 ppm</td>
<td>P</td>
<td>legislation limits for food processing plants, equipment, and utensils</td>
<td>(3)</td>
</tr>
<tr>
<td>0.10%</td>
<td>P</td>
<td>maximum concentration that can be safely used in contact products, according to the American College of Toxicology</td>
<td>(23)</td>
</tr>
<tr>
<td>0.1% (w/v)</td>
<td>P</td>
<td>disinfectant Lysol</td>
<td>(35)</td>
</tr>
<tr>
<td>3%</td>
<td>P</td>
<td>maximum allowed concentration for rinse-off hair products (Europe)</td>
<td>(105)</td>
</tr>
<tr>
<td>3%</td>
<td>P</td>
<td>disinfectant in food processing areas (Denmark)- before 2016</td>
<td>(106)</td>
</tr>
<tr>
<td>0.10%</td>
<td>P</td>
<td>preservative (Denmark)- before 2016</td>
<td>(106)</td>
</tr>
<tr>
<td>&lt;2.5%</td>
<td>P</td>
<td>biocidal preservative in masonry (France/UK)- before 2016</td>
<td>(106)</td>
</tr>
<tr>
<td>9-50%</td>
<td>P</td>
<td>water preservative for cooling systems (Denmark)- before 2016</td>
<td>(106)</td>
</tr>
<tr>
<td>10-15%</td>
<td>P</td>
<td>chemical toilets- before 2016</td>
<td>(106)</td>
</tr>
<tr>
<td>Concentration</td>
<td>Type</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>0.13%</td>
<td>P</td>
<td>antimicrobial soaps and antiseptics (Hy-G-Clenz, Global Industrial™ Advanced, Neosporin Wound Cleanser for Kids, Cleanse Antibacterial Hand Soap)</td>
<td></td>
</tr>
<tr>
<td>0.1 mg/kg</td>
<td>P</td>
<td>maximum allowed BACs in food products in Europe Reg. 1119/2014/EU (38)</td>
<td></td>
</tr>
<tr>
<td>7 mg/L</td>
<td>R</td>
<td>MIC of BACs for <em>L. monocytogenes</em> isolates from food processing plants (50)</td>
<td></td>
</tr>
<tr>
<td>0.40%</td>
<td>R</td>
<td><em>Pseudomonas</em> strain resistant to ammonium acetate-buffered BACs (43)</td>
<td></td>
</tr>
<tr>
<td>5 - 10 mg/L</td>
<td>R</td>
<td>MIC of BACs for Methicillin-resistant <em>Staphylococcus aureus</em> strains resistant to BACs (52)</td>
<td></td>
</tr>
<tr>
<td>92 mg/L</td>
<td>R</td>
<td>MIC of BACs for <em>Escherichia coli</em> K-12 resistant to BACs (53)</td>
<td></td>
</tr>
<tr>
<td>256 mg/L</td>
<td>R</td>
<td>MIC of BACs for <em>Salmonella</em> strain resistant to BACs (54)</td>
<td></td>
</tr>
<tr>
<td>1024 mg/L</td>
<td>R</td>
<td>MIC of BACs for <em>Escherichia coli</em> O157 resistant to BACs (54)</td>
<td></td>
</tr>
<tr>
<td>40 mg/L</td>
<td>R</td>
<td>MIC of BACs for <em>L. monocytogenes</em> in BACs (107)</td>
<td></td>
</tr>
<tr>
<td>50 and 400 mg/L</td>
<td>R</td>
<td>MIC of BACs for <em>E. coli</em> HB101 parent strains and strain overexpressing mdfA (72)</td>
<td></td>
</tr>
<tr>
<td>1.2 and 37.5 mg/L</td>
<td>R</td>
<td>MIC of BACs for <em>E. coli</em> KAM32 parent strain and strain overexpressing pmpM (74)</td>
<td></td>
</tr>
<tr>
<td>1200 and 1600 mg/L</td>
<td>R</td>
<td><em>Pseudomonas aeruginosa</em> (non-adapted and adapted) tolerance to BACs (56)</td>
<td></td>
</tr>
<tr>
<td>30 and 10 mg/L</td>
<td>R</td>
<td>MIC of BACs for <em>L. monocytogenes</em> wild-type and with <em>emrE</em> deletion (71)</td>
<td></td>
</tr>
<tr>
<td>70 - 625 mg/L</td>
<td>R</td>
<td>MIC of BACs for multiple isolates of <em>Pseudomonas aeruginosa</em> strains (93)</td>
<td></td>
</tr>
<tr>
<td>25 and 150 mg/L</td>
<td>R</td>
<td>MIC of BACs for <em>E. coli</em> strains before and after adaptation to BACs, respectively (89)</td>
<td></td>
</tr>
<tr>
<td>35 - 40 mg/L</td>
<td>R</td>
<td>MIC of BACs for <em>Listeria spp.</em> with BACs resistance (77)</td>
<td></td>
</tr>
<tr>
<td>4 - 64 µg/L</td>
<td>R</td>
<td>MIC of BACs for isolates of carbapenem-resistant <em>Acinetobacter baumannii</em> (92)</td>
<td></td>
</tr>
<tr>
<td>0.45 mM</td>
<td>R</td>
<td>MIC of BACs for <em>P. aeruginosa</em> (84)</td>
<td></td>
</tr>
<tr>
<td>0.225 mM</td>
<td>R</td>
<td>MIC of BACs for <em>E. coli</em> (84)</td>
<td></td>
</tr>
<tr>
<td>30 mg/L</td>
<td>R</td>
<td>MIC of BACs for <em>Listeria monocytogenes</em> after adaptation (55)</td>
<td></td>
</tr>
<tr>
<td>2 mg/L</td>
<td>R</td>
<td>MIC of BACs for <em>Campylobacter coli</em> after adaptation for 15 days (46)</td>
<td></td>
</tr>
<tr>
<td>350 mg/L</td>
<td>R</td>
<td>MIC of BACs for <em>Pseudomonas</em> (60)</td>
<td></td>
</tr>
</tbody>
</table>
26 
aeruginosa after adaptation to BACs for 30 days 

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Effect</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 - 135 mg/L</td>
<td>R</td>
<td>MBC (minimum bactericidal concentration) of BACs for Staphylococcus MRSA and MRSP isolates</td>
<td>(108)</td>
</tr>
<tr>
<td>0.01%</td>
<td>R</td>
<td>Inhibition of growth for planktonic cells of S. Typhimurium, no effect over mature biofilms from the same strain</td>
<td>(80)</td>
</tr>
<tr>
<td>0.5 - 1%</td>
<td>T</td>
<td>causes skin irritation</td>
<td>(20)</td>
</tr>
<tr>
<td>0.0001-0.1%</td>
<td>T</td>
<td>toxic effects to human conjunctival cells (in vitro)</td>
<td>(22)</td>
</tr>
<tr>
<td>0.255 mg/L</td>
<td>T</td>
<td>algal growth inhibition</td>
<td>(31)</td>
</tr>
<tr>
<td>4.15 μg ai/L</td>
<td>T</td>
<td>NOAEC for aquatic invertebrates</td>
<td>(3)</td>
</tr>
<tr>
<td>44 mg/kg/day</td>
<td>T</td>
<td>chronic NOAEC for mammals</td>
<td>(3)</td>
</tr>
<tr>
<td>32.2 μg ai/L</td>
<td>T</td>
<td>chronic effects in fish</td>
<td>(3)</td>
</tr>
<tr>
<td>1 mg/L</td>
<td>T</td>
<td>genotoxic effects in plant and mammalian cells (in vitro)</td>
<td>(21)</td>
</tr>
<tr>
<td>0.004 mg/L</td>
<td>T</td>
<td>toxic to Ceriodaphnia dubia (crustacean)</td>
<td>(30)</td>
</tr>
<tr>
<td>0.02%</td>
<td>T</td>
<td>superficial cell loss observed in the cornea of rabbits with an ophthalmological solution containing BACs</td>
<td>(25)</td>
</tr>
</tbody>
</table>

**Table 1.** Benzalkonium chlorides (BACs) concentrations found or allowed in commercial products (P), found in the environment (E), to which microbes are resistant or tolerant (R) and that cause toxic effects (T). MIC- Minimum inhibitory concentration. MBC-minimal bactericidal concentration. NOAEC - no observable adverse effect concentration. ai – active ingredient.

**Figure legend**

Figure 1. A. Benzalkonium chlorides (BACs) formula and structure. B. Uses of BACs and six reported types of mechanisms of microbial resistance to BACs.