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Objective: Identification of microbiota-based biomarkers as predictors of low-FODMAP diet response and
design of a diet recommendation strategy for IBS patients.
Design: We created a compendium of gut microbiome and disease severity data before and after a low-
FODMAP diet treatment from published studies followed by unified data processing, statistical analysis
and predictive modeling. We employed data-driven methods that solely rely on the compendium data, as
well as hypothesis-driven methods that focus on methane and short chain fatty acid (SCFA) metabolism
pathways that were implicated in the disease etiology.
Results: The patient's response to a low-FODMAP diet was predictable using their pre-diet fecal samples
with F1 accuracy scores of 0.750 and 0.875 achieved through data-driven and hypothesis-driven pre-
dictors, respectively. The fecal microbiome of patients with high response had higher abundance of
methane and SCFA metabolism pathways compared to patients with no response (p-values < 6 � 10�3).
The genera Ruminococcus 1, Ruminococcaceae UCG-002 and Anaerostipes can be used as predictive bio-
markers of diet response. Furthermore, the low-FODMAP diet followers were identifiable given their
microbiome data (F1-score of 0.656).
Conclusion: Our integrated data analysis results argue that there are two types of patients, those with
high colonic methane and SCFA production, who will respond well on a low-FODMAP diet, and all others,
who would benefit a dietary supplementation containing butyrate and propionate, as well as probiotics
with SCFA-producing bacteria, such as lactobacillus. This work demonstrates how data integration can
lead to novel discoveries and paves the way towards personalized diet recommendations for IBS.

© 2021 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
1. Introduction

Irritable bowel syndrome (IBS) is a chronic gastrointestinal
disorder that is prevalent in approximately 11% of adult population
[1]. It is associated with abdominal pain and changes in stool form
and frequency of bowel movements [1,2]. One of the emerging
treatments for IBS is to reduce the amount of fermentable oligo-
saccharides, disaccharides, monosaccharides and polyols (FOD-
MAPs) in the diet, also called the low-FODMAP diet, as
recommended by the American College of Gastroenterology [3] and
the Canadian Association of Gastroenterology [4]. The low-
FODMAP diet has been effective for 50%e80% of IBS patients [5],
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however the patients who will benefit from this diet cannot be
accurately identified beforehand. Several studies have attempted to
create predictors for the efficacy of this diet in IBS using pre-
treatment samples [6e8] however there is no evidence to show
the utility of such a predictor across multiple studies. Furthermore,
there is no common theory to explain the reason why the low-
FODMAP diet is only effective for some patients in terms of dis-
ease etiology that is supported by data form multiple studies. It is
believed that a low-FODMAP diet works by reducing the amount of
carbohydrates that are not digested by the small intestine hence
reach the colon to be used in gas producing microbial fermentation
[9].

Here, we investigate whether the efficacy of low-FODMAP diets
on IBS patients can be predicted by analysis of easy to obtain bio-
markers. Towards this goal, we created a compendium of micro-
biota metagenomics, by integrating data from 6 sources and fecal
metagenomics samples from 152 unique IBS patients and 37
lism. All rights reserved.
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healthy adults. In addition, we investigated whether the amount of
FODMAPs in an individual's diet, can be predicted using their gut
microbiome data, showcasing the potential utility of microbiome
data for assessing dietary adherence. Figure 1 illustrates our data
analysis methodology.
2. Materials and methods

2.1. Data curation

We searched PubMed for studies that have collected gut
microbiome data before and after a period of low-FODMAP dietary
treatment in humans. We found nine such studies and only six of
them provided us with both the gut microbiome data as well as the
corresponding metadata that is needed for this meta-analysis
(Table 1). In all studies, the microbiome data came from fecal
samples, characterized by 16S rRNA, or by the GA-map™ micro-
biome profiling [10]. In GA-map™ microbiome profiling, each fecal
sample is characterized by 54 numbers each representing the signal
intensity of a DNA probe. The probes were designed for detection of
bacterial taxonomies for distinguishing between IBS patients and
healthy controls given fecal samples. The 16S rRNA and GA-map™
were analyzed independently.
2.2. Metadata processing

In all studies, the severity of IBS was quantified using IBS-SSS
(IBS symptom severity scale) which is a number between zero
and 500 representing the overall severity of IBS symptoms in a
patient. We evaluated the patient's response to the diet based on
the improvement in their IBS-SSS score (DIBS-SSS ¼ IBS-SSSbefore -
IBS-SSSafter) after a period of following the low-FODMAP and
Fig. 1. Overview of low-FODMAP diet response prediction for irritable bowel syndrome (IB
genomes were integrated and analyzed from five independent studies. Consistent data proc
taxa (at genus level) abundances for individual gut microbiomes. In a data-driven analysis, d
no response to the low-FODMAP die. Diet response predictors were built to identify wh
metagenome. Furthermore a hypothesis-driven analysis was performed given the hypothesi
illustrated colon functions base on literature. Although similar to the data-driven analysis, o
for statistical validation, model training and the final diet response predictor.
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labeled the patient's response as “High” (i.e. DIBS-SSS � 150), “Low”

(i.e. 22 < DIBS-SSS < 150), or “No” (i.e. DIBS-SSS � 22). The high
threshold of 150 is reasonable since the reported mean plus stan-
dard deviation of DIBS-SSS for a placebo treatment can range from
124 to 162, [11,12] and therefore a “High” response is unlikely to be
associated with a placebo effect. The low threshold of 22 was
chosen to create a balance between the “No” and “High” response
groups.
2.3. Preprocessing of 16S rRNA microbiome data

We analyzed 16s rRNA data separately for each study before
integration. We used DADA2 [13] version 1.10.1 implemented in R
version 3.5.2 following the package's online tutorial (benjjneb.
github.io/dada2/bigdata.html). First, primer and adapter se-
quences were removed from each read and quality control was
performed by removing 16S rRNA reads that were chimeric, shorter
than 260 bp, or had at least two expected errors. In addition, longer
reads were truncated at 260 bp since read qualities decreased
sharply afterward. For one dataset [14], the reverse reads were
truncated at 160 bp instead due to the decrease of read qualities at
lower base pairs compared to the forward reads. Next, we per-
formed de novo sequence assembly to identify operational taxo-
nomic units (OTUs). Then SILVA database [15] version 32 was used
to identify bacterial taxonomies associated with 16S rRNA assem-
bled sequences. Taxa that were only observed in a single sample
were filtered out.
2.4. Functional profiling from 16S rRNA microbiome data

We imported OTU read counts of the DADA2 analysis into
qiime2, searched against Greengenes [16] and filtered out OTUs
S): The response of IBS patients to a low-FODMAP diet and their pre-diet fecal meta-
essing pipeline was applied on raw metagenome data to infer the relative pathway and
ifferentially abundant taxa and pathways were identified for patients with high versus
ether an IBS patient will benefit from a low-FODMAP diet given their pre-diet fecal
zed relationships between FODMAPs, methane metabolism, fatty acid metabolism and
nly the pathway abundances relating to methane and fatty acid metabolism were used

https://benjjneb.github.io/dada2/bigdata.html
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Table 1
Studies with gut microbiome data involving low-FODMAP dietary treatment.

Id Reference Microbiome Technology Access

1 [42] 16s rRNA N/A
2 [43] 16s rRNA N/A
3 [28] 16s rRNA Granted
4 [14] 16s rRNA Granted
5 [44] 16s rRNA N/A
6 [6] GA-map™ Granted
7 [20] 16s rRNA Granted
8 [29] 16s rRNA Granted
9 [45] GA-map™ Granted

N/A: Authors did not grant access to metadata and/or raw microbiome data.
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that could not be matched at the 97% identity threshold as needed
for PICRUSt [17]. Samples with no remaining OTUs were removed if
any, and predictive metagenome profiling and KEGG pathway
enrichment analysis (for level L3) were performed using PICRUSt.
Finally, we converted the read counts to relative abundances and
transformed using centered log-ratio transform (CLR) to account
for the compositionality of microbiome data [18]. In the case of zero
relative abundances of a given pathway, we used the minimum
amongst CLR transformed values of non-zero read counts, sub-
tracted by 10% of their standard deviations. Given that reported
KEGG pathways from PICRUSt did not include specific pathway for
SCFAs, we relied on fatty-acid pathway abundances instead.

2.5. GA-map™ microbiome data processing

We normalized the signal intensities of 54 probes from each
study separately to have zero-mean and unit-variance for a given
probe before integration. To estimate the relative enrichment of
methane metabolism in gut microbiome, we used the AG0581
probe (designed for detection of genus Dorea). The genus Dorea has
been shown previously to be negatively associated with breath
methane levels (See [19], Table 3). To estimate the enrichment of
SCFA metabolism pathways in gut microbiome, we used two pairs
of probes AG0686, AG1099 (designed for genus Parabacteroides)
and AG1225, AG1226 (designed for genus Alistipes) as their cor-
responding genus have been shown to be negatively associated
with fecal SCFA levels (See [20], Table S5).

2.6. Differential analysis and statistical validation

We used unpaired non-parametric Wilcoxon rank-sum test for
identifying pathways and taxa that are differentially abundant
between IBS patients with high (n ¼ 8), low (n ¼ 29), or no (n ¼ 9)
response to low-FODMAP diet where degrees of freedom is equal to
the number of samples used minus two (e.g. degrees of freedom for
high versus no response was 8þ9-2 ¼ 15). The calculated p-values
were one sided for hypothesis-driven statistical validations and
two sided for data-driven differential analysis. We also calculate
FDR-corrected p-values (i.e. q-values) in data-driven differential
analysis to account for multiple hypothesis testing given the
number of KEGG pathways (n¼ 237) and genus taxa used (n¼ 217),
with thresholds of 0.15 or lower.

2.7. Diet response prediction

We first integrated data from multiple studies and performed
dimensionality reduction using sparse principal component anal-
ysis [21,22] reducing the number of microbiome features (microbial
taxa, enriched pathways or GA-map probes) to 30% of the number
of profiles in the dataset. Then for a given pair of classification la-
bels, we created random forest (RF) classifier and evaluated using
3

leave-one-out cross-validation. We also evaluated the classification
performance by iterative removal of the feature that is identified as
least important by the RF classifier until only one feature remained.
In all cases the areas under the precision-recall (PR) and receiver
operating characteristic (ROC) curves, as well as the F1 score (the
harmonic mean of precision and recall) were calculated.

3. Results

A consistent data processing pipeline was applied to the curated
metagenomics data enabling downstream analysis (hypothesis-
drivenanddata-driven). Thehypothesis-drivenanalysiswas informed
from the illustrated literature-based hypotheses: (a) themethane gas
can inhibit intestinalmotility hence contributing to stool abnormality
in the form of constipation or bloating [23], (b) methanogenesis re-
quires hydrogen and carbon dioxide that can be generated by anaer-
obic fermentation of undigested carbohydrates in colon [24], and (c)
short-chain fatty acids (SCFAs) such as formate can also induce
methanogenesis independently or in tandem with hydrogen [9,25].
Therefore, in hypothesis-driven analysis we only used methane and
fatty acid metabolism pathway abundances as input while in data-
driven analysis all pathways and taxa (at genus level) were used for
differential abundance analysis and predictive modelling.

3.1. Comparison of high/low response to Low-FODMAP diet reveals
structural differences in the microbiota

Pre-diet fecal metagenomes of IBS patients were integrated and
processed from five studies along with disease severity scores (IBS-
SSS) ranging from zero to 500 before and after following a low-
FODMAP diet for a total of 152 patients (Fig. 2A). For differential
analysis, we focused on the patients with most extreme responses
(high versus no response) that had 16S rRNA metagenomic profiles
(n ¼ 17). Top 5 KEGG pathways were differentially abundant with
q-values < 0.11 with fatty acid metabolism being the most differ-
entially expressed. However, there was no differentially abundant
genus taxa when a q-value significance threshold of 0.15 is used
(Fig. 2BeC). Three genera (Ruminococcaceae UCG-002, Rumino-
coccus 1 and Anaerostipes) were identified amongst the top 5 to be
positively associated with stool SCFA levels based on other studies
[20,26]. Therefore a 3-genus microbiome biomarker was designed
by adding their CLR-transformed abundances providing higher
values for patients with a high response versus low response (p-
value ¼ 1.0 � 10�10) or no response (p-value ¼ 2.5 � 10�4)
following the diet (Supplementary Fig. S5). Note that the micro-
biome profiles of patients with low responsewere never used in the
discovery of top five genera reported in Fig. 2C. A data-driven
predictor of high/no response was built given all KEGG pathway
abundances providing an F1 score of 0.750, AUROC of 0.708
(baseline: 0.5) and AUPR of 0.629 (baseline: 0.471).

We also created predictor for high versus low or no response for
patients with 16S rRNA metagenome profiles (Fig. 3AeD). Using
pathway abundances as input provides an F1 score of 0.625, AUROC
of 0.850 (baseline: 0.5) and AUPR of 0.693 (baseline: 0.174) while
with genus taxa abundances as input an F1 score of 0.533, AUROC of
0.873 (baseline: 0.5) and AUPR of 0.425 (baseline: 0.174) was ach-
ieved. For patients with GA-map data (Fig. 3C and F) an F1 score of
0.581, AUROC of 0.625 (baseline: 0.5) and AUPR of 0.530 (baseline:
0.462) was achieved.

3.2. IBS patients with methanogenic fecal microbiome respond
better to Low-FODMAP diets

Low intestinal motility of IBS patients has been associated with
intestinal production of methane [23] due to methane producing



Fig. 2. Pre-diet microbial differential abundances for IBS patients with high versus no response to the low-FODMAP diet: (A) IBS patient records from five studies are sorted into
three groups based on their response to the low-FODMAP diet (High/Low/No) given the amount of improvement in IBS symptom severity after following the diet. (B) Top 5 pre-diet
gut microbiome KEGG pathways that are differentially abundant (following a clr-transformation of their relative abundances) amongst High versus No response patient groups (q-
values < 0.11; Fatty acid metabolism p-value ¼ 1.5 � 10�3; Nucleotide excision repair p-value ¼ 3.7 � 10�3; Phenylalanine, tyrosine and tryptophan biosynthesis p-
value ¼ 3.7 � 10�3; RNA polymerase p-value ¼ 3.7 � 10�3; Thiamine metabolism p-value ¼ 3.7 � 10�3). (C) Similar to (B) for differentially abundant genus taxa (genus related q-
values are not significant using a threshold of 0.15; Ruminococcaceae UCG-002 p-value ¼ 3.1 � 10�3; Ruminococcus 1 p-value ¼ 1.3 � 10�2; Victivallis p-value ¼ 2.3 � 10�2;
Anaerostipes p-value ¼ 3.0 � 10�2; Turicibacter p-value ¼ 6.0 � 10�2).

Fig. 3. Prediction of response to low-FODMAP diet given pre-diet microbiome data: (AeC) ROC and PR curves for prediction of response to low-FODMAP diet using pathway
abundances, genus taxa abundances and GA-map probe signals of pre-diet gut microbiome. The star relates to the threshold used for calculating the F1 scores. (DeF) The F1 scores
relating to predictive models when the least important feature (pathway, taxa or GA-map probe) is incrementally removed until only a single feature remains in the predictive
model. The stars highlight the best F1 score achieved and each corresponds to a pair of ROC and PR pair curves on the top (i.e. A&D, B&E and C&F correspond respectively).
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microbes (methanogens) in the gut [20,27], which use undigested
carbohydrates for their metabolism [9]. Therefore, we hypothesized
that response to low-FODMAP diet is associated with gut micro-
biome methane metabolism capability. To validate this hypothesis,
we performed meta-analysis on 46 patients; integrated from three
studies [14,28,29] that rely on 16S rRNA data. In agreement with
our hypothesis, the high response group of patients had a signifi-
cantly higher enrichment in methane metabolism pathway of their
pre-treatment microbiome samples compared to low response (p-
value ¼ 1.3 � 10�2) and no response (p-value ¼ 5.6 � 10�3) groups
(Fig. 4A). We then used GA-map microbiome data from a separate
study [6] with 31 IBS patients, using only the probe associated with
methane production. The analysis of GA-map data also supports
our hypothesis with high response patients having higher abun-
dance in methane production associated taxa when compared to
the no response patients (p-value ¼ 7.4 � 10�3) (Supplementary
Fig. S1).
3.3. The efficacy of Low-FODMAP diet can be accurately predicted
by methane and short-chain fatty acid metabolic pathways

Short-chain fatty acids (SCFAs) are key products of microbial
fermentation inhumanintestineand important forhealthof epithelial
cells [30]. Therefore, we also analyzed the enrichment of fatty-acid
metabolism pathway in 16S rRNA fecal microbiome data of IBS pa-
tients.Ouranalysis showshigherenrichment in fatty-acidmetabolism
for high versus no response patients (p-value ¼ 7.8 � 10�4) (Fig. 4B).
Fig. 4. Prediction of response to low-FODMAP diet given pre-diet microbial abundances for m
pathway enrichment of pre-treatment gut microbiome for patients with High, Low or No
response to low-FODMAP diet using methane and fatty acid metabolism pathway abundanc
vs. Low or No response to low-FODMAP diet using methane and fatty acid metabolism pat
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Next, we created a classifier to predict the patient's response (high
versus no response) based on methane and fatty acid metabolism in
16s rRNAdata.Ourrandomforest (RF) classifierachieved0.89and0.84
for area under the curve (AUC) of ROC and PR curves, respectively
(Fig. 4CeD).We also performed analysis for GA-map probe data using
taxa probes that have been associated with SCFA levels in fecal sam-
ples, but did not find a significant difference between the “High-
response” and “Low-response” IBS patients.
3.4. Predicting diets from their effect on the microbiome

Diet is considered to be an important factor for modulating in-
testinal microbiota [31], however it is not clear whether a low-
FODMAP diet leads into common changes in gut microbiome
across different individuals. To investigate this, we used 188 16S
rRNA fecal microbiome profiles from IBS patients and healthy in-
dividuals before (n ¼ 95) and after (n ¼ 93) low-FODMAP dietary
intervention. Microbiome samples were characterized by their
KEGG pathway and genus taxa abundances. We used random forest
classifier to predict whether the microbiome sample is taken
before, or after the low-FODMAP dietary intervention (Fig. 5A).
When pathway abundances were used as input the classifier ach-
ieved F1 score of 0.656, AUROC of 0.687 (baseline: 0.5) and AUPR of
0.663 (baseline: 0.495) (Fig. 5B). Only three pathways were needed
to achieve an F1 score of 0.66 (Fig. 5D). Using taxa abundances at
genus level for classification provided F1 score of 0.602, AUROC of
0.608 (baseline: 0.5) and AUPR of 0.597 (baseline: 0.495) (Fig. 5C).
ethane and fatty acid metabolism pathways. (A&B) Methane and fatty acid metabolism
response to low-FODMAP diet. (C&D) ROC and PR curves for predicting High vs. No
es (CLR-transformed) in gut microbiome. (E&F) ROC and PR curves for predicting High
hway abundances (CLR-transformed) in gut microbiome.



Fig. 5. Prediction of diet (low-FODMAP vs. other) given microbiome data: (A) Fecal metagenomes were integrated from four studies along with the dietary regimen that was
followed prior to sampling. Consistent data processing pipeline was applied on raw metagenome data to infer the relative pathway and taxa (at genus level) abundances for each
sample. Diet predictors were built to identify the individual's diet given their fecal metagenome. (B &C) ROC and PR curves for diet prediction using pathway and genus taxa
abundances in gut microbiome. The star relates to the threshold used for calculating the F1 scores. (DeE) The F1 scores relating to predictive models when the least important
feature (pathway or taxa) is incrementally removed until only a single feature remains in the predictive model. The stars highlight the best F1 score achieved and each corresponds
to a pair of ROC and PR pair curves on the top (i.e. B&D and C&E correspond respectively).
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4. Discussion

While several studies have confirmed the efficacy of low-
FODMAP diet for symptom management in IBS, between 55% and
66% of IBS patients have a response that is similar to a placebo
treatment (Supplementary Fig. S4.). We hypothesized that the
patient's response level (high/low/no) to a low-FODMAP diet can be
6

predicted using their fecal microbiome samples. Although this
hypothesis had been validated to an extent by individual studies,
there is no predictor that (a) works across multiple studies and (b)
comes with a mechanistic explanation of the patient's response
based on their microbiomes. To this end we integrated data from
five distinct studies and performed a meta-analysis showing that
the patient's response to low-FODMAP diet is predictable given



A. Eetemadi and I. Tagkopoulos Clinical Nutrition xxx (xxxx) xxx
their fecal microbiome. We also formed a literature-based hy-
pothesis supported by the integrated data that a high response to
low-FODMAP diet is associated with higher abundance of methane
and SCFA metabolism pathways in gut microbiome. Our mecha-
nistic explanation is that a low-FODMAP diet works by lowering the
amount of colonic methane that is shown to slow down intestinal
motility [23], a precursor to constipation and/or bloating. There-
fore, patients with highest response have a colonic microbiome
with substantial methane production capability due to (a) methane
metabolism pathways, and (b) SCFA metabolism pathways that
promote methanogenesis, both of which rely on microbial diges-
tion of carbohydrates. Gut microbes can also use formate or
hydrogen to produce acetate [32], an SCFA with anti-inflammatory
properties [33], which may inhibit their availability for methano-
genesis and decrease bloating. The microbiome SCFA pathways can
have positive or negative impact on microbial secretion and ab-
sorption of gases, which necessitates more in-depth investigation
of their role in IBS dietary treatments (e.g. low-FODMAP diet and
probiotics). Additionally, we showed that gut microbiome data can
be used to predict whether a patient is following a low-FODMAP
diet, suggesting that this diet modulates gut microbiome and
leaves identifiable traces which can be used for assessing dietary
compliance. This work showcases the utility of integrated meta-
analysis using raw data from individual studies with a consistent
methodology to arrive at new insights (see Supplementary Fig. S6.).
Although there were several differences amongst the low-FODMAP
studies that can create risks for data analysis (see the “Differences
amongst studies” tab under Supplementary Data.xlsx), we found no
significant change in the amount of improvement of IBS-SSS score
after following a low-FODMAP diet amongst the studies despite
their differences (see Supplementary Fig. S9.). In addition, when it
comes to microbiome data processing and analysis, we minimized
the impact of such differences by applying the same standard
pipeline starting from the raw microbiome data of each study. We
acknowledge that the other differences (e.g. stool sample handling
and metagenomic sequencing) can also be problematic in revealing
any signal, however once such pattern is discovered, these differ-
ences increase the robustness and reproducibility of the analysis, as
it becomes less sensitive to the specific details of the techniques
used.

Prior studies show that lower abundance of microorganisms
that produce butyrate (an important SCFA) is associated with irri-
table bowel syndrome [34], Lactobacillus based probiotics promote
production of SCFAs in the gut [35] and improve disease symptoms
in IBS [36]. Consistent with our meta-analysis results, we suggest a
biomarker-based diet recommendation system where a low-
FODMAP diet is recommended to patients with high colonic
methane and SCFA production, and a probiotic supplementation
with SCFA producing microbes is recommended to patients with
low colonic methane and SCFA production. Such a personalized
recommendation system will be inline with dietary recommenda-
tions from the American College of Gastroenterology and the Ca-
nadian Association of Gastroenterology for IBS which consider both
dietary treatments as beneficial [3,4], while expected to decrease
the array of treatments that patients need to try before finding the
treatment that works for them. Clinical trials will be necessary to
identify best biomarkers, probiotic species and dosages and eval-
uate the patient's response compared to alternative treatments. A
comprehensive array of tests including gas analysis of breath
samples, shotgun metagenomics, qPCR with primers that can
detect SCFA producing microbiomes and methanogenic microor-
ganisms that are archaeal, and gas chromatographyemass spec-
trometry (GC/MS) for detecting SCFA levels from microbiome
samples (fecal or through colonic biopsy), will be necessary to
provide more accurate insight into the microbiome pathways
7

discussed. Given the advent of low-cost breath testing and acces-
sibility of primer-based qPCR testing of fecal samples, gut micro-
biomemethane and SCFAmetabolism levels can be readily assessed
in the clinic in order to provide more effective dietary recom-
mendations for IBS patients. Intestinal bacterial infections are
commonly diagnosed through low-cost qPCR testing of stool sam-
ples for detection of knownpathogens given target-specific primers
[37]. Intestinal malabsorption of carbohydrates is also diagnosed in
the clinic using hydrogen and methane breath testing although
with variable repeatability [38]. Upon development of a qPCR kit for
gut microbiome SCFA metabolism estimation (e.g. by detection of
Ruminococcus 1, Ruminococcaceae UCG-002 and Anaerostipes
genera levels), a personalized IBS diet can be employed in the clinic
where SCFA supplementation (prebiotic or postbiotic) is recom-
mended when SCFA microbiome metabolism is low, and a low-
FODMAP diet is recommended when SCFA and methane meta-
bolism of the gut microbiome are above a calibrated threshold. We
believe that the recent advances in high resolution omics and
computational methods across diet, microbiome, and health [39],
as well as novel ways of food representation that rely on artificial
intelligence [40,41], will give rise to more personalized dietary
treatments potentially revolutionizing clinical nutrition.

It is important to note that, the analyzed data here included
microbiome profiles from IBS patients with diarrhea, constipation,
or both symptoms, however, we did not perform a separate analysis
based on the IBS type since multiple studies did not provide the IBS
type information per patient. Further studies will be necessary to
validate the hypothesized mode of action for this diet in reducing
constipation and bloating symptoms of IBS, and to understand the
possibly different modes of action in reducing diarrhea.
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