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1. INTRODUCTION

The design of a functional component that is part of a
larger, interconnected ensemble, requires the following fun-
damental principles: First, the availability of characterized
fundamental blocks, may it be transistors and capacitors for
electronic design or promoters and coding regions for biolog-
ical engineering, that can be assembled together into a func-
tional entity. Second, the development of predictive models
that are accurate enough to capture the dynamic behav-
ior of the design component and its effect at a systems-level.
Third, access to optimization tools that can provide optimal
solutions, given user-defined constraints and objective func-
tions, by utilizing the former (parts and model predictions)
as its inputs. In this abstract, we present our work towards
an efficient circuit optimization strategy and a data-driven,
genome-scale host model that can be integrated to any cir-
cuit design platform. The resulting framework accounts for
host-related and secondary effects, which are generally ig-
nored but can have substantial effect on the host and circuit
behavior.

2. METHODS AND RESULTS

2.1 An efficient optimization method with op-
timality guaranty

The carriers of information in gene circuits are chemical
molecules within the cell (broadcast) instead of electrons
within an isolated wire (unicast) as it is the case in electrical
circuits. This adds two more necessary constraints for gene
circuit design, namely the absence of cross-talk effects and
connection compatibility between sub-circuits (i.e. the out-
put molecules of a sub-circuit match the input molecules of
all connected downstream sub-circuits). These constraints
make the problem of selecting parts/modules to build a cir-
cuit become very difficult. Recently, an exact approach [1]
was introduced to complement previous heuristic efforts [2]
for that selection problem. This approach is based on a dy-
namic programming paradigm to explore the solution space
by enumerating all sub-solutions, albeit at a large compu-
tational cost that can be prohibiting, in very large part
database and circuit sizes. To address this, we devised a
branch-and-bound method that estimated the bound of the
solution cost (i.e. the bound on the number of parts and
modules used in a solution) by relaxing the constraints of
cross-talk absence and connection compatibility. With this
bound information, we repeat the search for a complete so-
lution (i.e. a solution that satisfies both the constraints)
of a cost value from the lower bound to the upper bound

Running time (seconds)

Design DP BB

2-cascade 1.8e-1 2.0e-2
3-cascade 2.1e-1 2.0e-2
4-cascade 2.5e-1 4.0e-2
band-detector 3.4e-1 8.0e-2
feed-forward 6.3e-1 7.0e-2
2-not-and 6.4¢-1 4.0e-2
3-input-and 2.3 1.2¢-1
3-not-and 3.6el 1.5e-1
2-to-1-mux 1.1e2 1.6e-1
D1 1.2e3 9.8e-1
D2 2.0e3 4.5e-1

Table 1: A comparison between the running time
of the dynamic programming (DP) approach [1] and
the branch and bound (BB) approach.

until such a complete solution is found. By that way, we
can skip the enumeration of all sub-solutions, which results
in significant computational performance improvement. In
a benchmark with 11 circuits that span several functional
domains and a part library with 75 parts and 271 exper-
imentally constructed modules, this method resulted in a
remarkable improvement in running time (see table 1) when
compared to the original approach in [1].

2.2 A multi-layer, genome-scale model for phe-
notypic predictions

The simulation of a host that has been genetically en-
gineered is an important step towards design automation.
For this reason, we developed an integrated genome-scale
model [3] for phenotypic predictions of natural and engi-
neering E. coli strains in several laboratory environments
(Figure 1). We first constructed a normalized dataset that
contains the expression of 4189 genes in 2262 conditions, in-
cluding data for 31 strains and over 15 different media. We
then created an integrative model that contains three sub-
models that bridge the transcriptional, signal transduction
and metabolic layers. This model covers 3704 regulatory
interactions, 151 instances of signal transduction systems
and 2251 metabolic reactions. Parameters in the transcrip-
tional sub-model were determined by fitting the gene ex-
pression level of 328 transcription factors over four sets of
constraints (phenomenological, capacity, environmental and
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Figure 1: An overview on a computational framework to design and simulate synthetic gene circuits

genetic constraints). The integrated model was evaluated
by performing cross-validation on the various datasets for
growth and gene expression prediction, as well as predicting
de novo experimentally measured data on the growth rate
of 10 single-gene knock-outs for E. coli strains over different
environments (28 genotype-phenotype combinations in to-
tal). Results show that our model can predict growth rates
with 0.6 to 0.8 pearson correlation coefficient between the
experimentally measured and computationally-derived pre-
dictions, which is significantly higher than M models and on
par to other ME models so far [4]. Furthermore, the con-
structed model can sense environmental changes and trans-
lated them to changes in gene expression and growth, which
is a significant step forward for bioengineering efforts.

2.3 Integration of a computer-aided design op-
timization platform with a genome-scale
simulator

As shown in Figure 1, a list of top-ranked candidate cir-
cuits from the optimization framework, act as inputs to the
genome-scale simulator, in order to predict the dynamic be-
havior within a specific host strain and environmental con-
ditions. All possible triplets of circuit, host strain and envi-
ronmental conditions are considered and their information
is used to update the transcriptional sub-models by modi-
fying the gene regulatory network and signal transduction
sub-models by adding/removing related equations. Addi-
tionally, information about the environmental conditions af-
fects the input of signal transduction and the metabolism
sub-models, by setting the bound of related fluxes and com-
ponents that are implicated in signal transduction pathways.
The resulting benchmark on the triplet information serves as
a decision support for laboratory construction and testing.

3. DISCUSSION

In this abstract, we present our results in an optimization
method for part selection and an approach to integrate a de-
sign workflow and a genome-scale simulator. Although the
incorporation of a genome-scale model to a design pipeline
seems straight-forward, once each of these two frameworks
are in place, there are a number of points to be considered.
First, genome-scale and circuit models use a very different
approach to modeling, with the former relying in a very
small set of parameters that usually map statistical associ-
ations and not biophysical phenomena. In contrast, circuit
models try to capture, in detail, the biophysical dynamics
and use the appropriate kinetic constants (e.g. dissociation
constants kp, degradation rates kq4ey) and modeling frame-
works to do so. Merging these two worlds under a unifying
framework that increases the model’s predictive ability is
quite challenging. As both ficlds move forward, data avail-
ability and coordinated efforts in both disciplines will be
instrumental to close this gap.
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