Parameter inference for gene circuit models
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1. INTRODUCTION

Parameter inference is crucial in any modeling effort. Pa-
rameter inference based on sequential fitting of data to each
model leads to erroneous solutions due to over-fitting and ill-

constrained parameter bounds. Parameter estimation through

fitting multiple models simultaneously can reduce this error,
albeit it is computationally intractable for most practical ap-
plications. Here, we propose an alternative approach of pa-
rameter inference cascades, where parameter values with low
uncertainty are propagated to the sequentially fitted mod-
els. We propose how to deal with noise in the data and
we introduce confidence intervals as a selection metric on
parameter value propagation. We demonstrate how this ap-
proach reduces parameter estimation error in a synthetic
circuit case-study.

2. METHODS AND RESULTS

Model: We use a simple model [1] that can capture both the
processes of transcription and translation. More specifically,
when a repressor R binds to a promoter pgr, the expression
level of a gene g at the downstream of pr is modeled by

Apr — Bpg (1)

o ()
Kpp

where vy, Vg are the expression level of g and R respectively,
measured in relative expression units (REU) [2]. Parameters
Bpr> g, Kpp,npy represent the basal level, the promoter
strength, the binding affinity, and its cooperativity respec-
tively, pertaining to promoter pr and its repressor R. In
the case where a ligand Lr can bind and inactivate R, vgr
in equation 1 is updated by
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where [LR} is the ligand concentration. Paramecters Kr,
and nr, correspond to the dissociation constant and the
Hill coefficient of the ligand, respectively.

A case study: Assume a cascade of repressors, as depicted
in Figure 1. If we use the basic model, there are 16 pa-
rameters to capture all four circuits. For our evaluation,
we fixed the parameter values, and then generated through
simulations the corresponding synthetic datasets, on which
we added a 10% of Gaussian noise. We also generated the
data in triplicate and calculated the standard deviation of
the output to simulate the experimental data in practice.
Model fitting: Suppose that each circuit C; is modeled by

yi = Mi(xi,05) i=1,...,4
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Figure 1: A case study with four cascade circuits
(left) and their corresponding simulated data from
a model with 10% Gaussian noise.
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Figure 2: Problems with parameter inference. Mul-
tiple optimal solutions exist for the same circuit C
(left plot), optimal sequential parameter estimation
from circuits 1-3 is unable to simulate points in cir-
cuit Cy. The proposed method correctly identifies
the optimal parameter set (right plot).



where z;, yi, 0; represent the input, the output, and the set
of model parameters, respectively, all for circuit C;. For ex-
ample, for the first circuit of Figure 1, x; is the ligand L., y;
is the GFP concentration and 6; is the set of six parameters
that are needed in equations 1 and 2. Each parameter can

appear in more than a single circuit, so we denote the set of

all parameters 0=, 0.
Let D; *{( ,yfl) (1)) .o (z (di ,yfd), (di))}beabyn—
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thetic dataset with d; data points of the circuit C; and O'(J)

capturing the standard deviation of the output y(] )

For each circuit C;, if all data points are independent and
the output value y; has a Gaussian distribution then the
log-likelihood (3] is
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We can fit the value 6; for parameters of each circuit C;
seperately by solving the maximum likelihood problem

07 = argmaz LL(D;|0;)
0;

If the model M; is sloppy [4], then two different parame-
ter value combinations may have similar model outputs as
in Figure 2. If we fit a sloppy model with a given dataset
that contains noise, the fitted parameter values may be far
from the actual values. To aleviate this, we can add more
constraints on the parameters by fitting all the models si-
multaneously:

4
0" = argmax LL(D;|b;
gmaz Y LL(D)

However, solving this problem is computationally intractable
due to the number of parameters involved. To reduce the
computational cost, we can perform a sequential fitting,
where the fitted parameter values are propagated to the next
fitted model. However, any errors are also propagated and
accumulated, which leads to erroneous solutions, as shown
in Figure 2. To minimize this issue, we propose to propa-
gate only parameter values of high confidence and introduce
confidence intervals for this purpose.

Confidence interval We use the approach in [3] that is
based on the profile likelihood [5] to estimate the confidence
intervals of parameter values. The profile log-likelihood of a
parameter py € 60; by fixing it to a value v can be defined by

PLLy, (v) = e,ve{mﬁf:u}LL(Dilei)

And the confidence interval for parameter py is
Cla(pr) = {v| —2PLLy, (v) < —2LL(D;|6;) + A(a) }

where « is the confidence level. The threshold value A(a) =
icdf (x%, ) is the a-quantile of a x? distribution with one de-
gree of freedom.

Interestingly, by using this method the final prediction can
be reliable even when its parameters have a large confidence
interval, as it is the case in circuit C3. The combination of
this ensemble learning and high-confidence parameter prop-
agation is what leads to superior parameter inference re-
sults. Figure 3 depicts the solution to our case study by
following Algorithm 1. Our approach can estimate the pa-
rameter value with a smaller error in all cases except for the
parameter nr,, where both approaches are similar.
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Figure 3: A comparison between actual and esti-
mated parameter values.

3. DISCUSSION

We presented a new approach to infer the parameter value
for multiple models with smaller error. Future work will be
extension of this technique to more complex models and as-
sessment of various optimization techniques such as symbolic
computation or pattern search to reduce the computational
cost.

Algorithm 1: Parameter inference
Input: Models M;, datasets D;, threshold values «, e
Output: Parameter values and their confidence interval
begin
Cl.(px) =
repeat
for i =1—ndo
G ={g € C; | Range(vy) < e}
0" = {pr € 0; | 3g € G A py. affects vy}
0" = {pk €0, ‘ C]u(pk) < 8}
0; =0;\ (0'U0")
Fix value of vy (g € G) and py € 0" in M;
Estimate éz by fitting M; with D;
Update Cl(pk), Range(v,) Vpi € i, g € C;

| until Cla(px) and Range(vg) do not change

Range(vy) = (—00, +00) Vpi, € 0,9 € C;
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