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Abstract— The attempt to elucidate biological pathways and
classify genes has led to the development of numerous clustering
approaches to gene expression. All these approaches use a single
metric to identify genes with similar expression levels. Until
now, the correlation between the expression levels of such genes
has been based on phenomenological and heuristic correlation
functions, rather than on biological models. In this paper,
we derive six distinct correlation functions based on explicit
thermodynamic modeling of gene regulatory networks. We then
combine these correlation functions with novel biclustering al-
gorithms to identify functionally enriched groups. The statistical
significance of the identified groups is demonstrated by precision-
recall curves and calculated p-values. Furthermore, comparison
with chromatin immunoprecipitation data indicates that the
performance of the derived correlation functions depends on the
specific regulatory mechanisms. Finally, we introduce the idea
of multi-class biclustering and with the help of support vector
machines we demonstrate its improved classification performance
in a microarray dataset.

I. INTRODUCTION

One of the main challenges in computational biology is the
classification of genes in functional categories and biological
pathways based on their expression profiles. The expression
data are often massively produced by microarray experiments
and formulated as a matrix where each row is the logarithmic
representation of a gene’s relative expression with respect to
the expression of a control, throughout different conditions.
The control may be either the same gene in a predetermined
condition or the average mRNA concentration of all genes.
The columns of the microarray data matrix represent the
different experiments (environmental conditions, individual
cases, tissues or diseases).

A number of traditional clustering techniques such as K-
means [25], self organizing maps [6], and hierarchical clus-
tering [24] have been used over the years in order to cluster
together genes or conditions. One promising approach, called
biclustering, aims at discovering clusters of genes that are
correlated in only a subset of conditions. The term biclustering
(also known as co-clustering [4], direct clustering [7], box
clustering [16]) was used by Mirkin (1996) to describe “simul-
taneous clustering of both row and column sets in a data ma-
trix”. The first time biclustering was used to cluster microarray
data was in 2000, where a soft clustering algorithm on both
genes/conditions was proposed [3] [12]. Since then, numerous
microarray biclustering algorithms have been developed that

either used a different metric to search for a similarity class
[5] [11] [19] [23] [22], or proposed an alternative search
method [21] [26]. A recent review and categorization of most
biclustering methods so far can be found in [20].

Despite the plethora of metrics used in various clustering
algorithms, the number of correlation functions that they aim
to find is rather limited and unsubstantiated by any biological
model. Most approaches try to cluster genes that either (a)
have the same expression level through different conditions,
(b) their expression levels differ by a constant or (c) their
expression levels exhibit a linear relation. However, there is
no biological reason to believe that the expression profile
of coregulated genes should be strictly following one of the
correlation functions mentioned above. Furthermore, due to the
existence of various coregulation mechanisms, it is very likely
that from gene group to gene group the observed correlation
will be different.

We addressed the above concerns by associating correlation
functions to transcription factor (TF) regulatory models. It is
well established that TF regulatory networks have a profound,
dominant effect in the transcription regulation. Therefore it is
expected that correlation functions derived directly from them
would better capture the common features among coregulated
genes.

In the following sections, we derive directly from thermody-
namic principles six distinct correlation classes that correspond
to the most frequent regulation scenarios. We then introduce
several metrics and two biclustering algorithms that are used
to search for different gene groups and we propose a method
of combining multiple classes together. Finally, we evaluate
the performance of various correlation classes and biclustering
methods by analyzing the functional enrichment of the result-
ing biclusters. Throughout the paper, when referring to expres-
sion data the words “gene” and “condition” are synonyms to
“row” and “column” of the data matrix. Supplementary figures
and proofs are available online [27].

II. METHODS

A. Correlation Classes

The transcription of genei under conditionj will result in a
specific mRNA concentration [mRNA]ij . The simplest regula-
tory case occurs when a group of genes has exactly the same
cis and trans regulatory elements, the corresponding mRNAs
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have the same lifetimes and the binding of trans regulatory
elements to the promoter sites induces the same rate of
transcription. In this scenario, the steady-state concentrations
of the mRNAs for all members in the group will be equal
for any condition. This corresponds to class 1 similarity with
correlation function given by

log [mRNA]ij = log [mRNA]kj (1)

However, any deviation from the above regulatory mech-
anism will introduce a displacement in the expression level
between two genes. This leads to class 2 with correlation
function

log [mRNA]ij = w0 + log [mRNA]kj (2)

The constant displacement in the transcription rates may
arise from (a) genes having different epigenetic modifications
that result in being transcribed at different rates [13] [14],
(b) different topology of the promoter region that causes the
genes to have different efficiency of transcription initiation
or (c) different half lifetimes of the mRNAs [15]. More
specifically, if several genes are transcribed at the same rate,
but their mRNAs have different stabilities, their steady-state
concentrations will be scaled and the corresponding logarithms
will be displaced by a constant.

A more general class, class 3, incorporates the event of
dissimilar TF binding stoichiometry in a group. A simple ex-
ample is when only a single TF molecule is needed to regulate
a certain gene, but two or more TF molecules are needed for
the regulation of another. This class also incorporates the case
where a modulator molecule(s) binds to multiple locations on
the TF protein. The number of modulator molecules and the
position they are bound affect regulation of target genes. In
both cases, the mRNA concentrations of two coregulated genes
will have a power law dependency, which gives rise to a class
3 correlation function

log [mRNA]ij = w0 + w1 log [mRNA]kj (3)

A TF regulates multiple genes by identifying and binding to
short conserved sequences that usually exist in the upstream
regions of the regulated genes. Nevertheless, although these
sequences are similar, they are almost never the same. In
addition, the orientation of the consensus sequences and their
distance from the start of translation may also differ from
gene to gene. This binding site diversity results in different
binding affinities of the TF-DNA interaction and, thus, alters
the regulation dynamics of the system. The above regulatory
mechanism gives rise to class 4 with correlation function

log [mRNA]ij = log(w0[mRNA]kj) + log (w1[mRNA]kj + w2) (4)

The analytical expression of class 4 encompasses many
other biological scenarios. For example, assume that TFm and
TFn regulate genes i and k respectively. If TFm and TFn are
also correlated by class 1 or class 2 correlation functions in a

regulation cascade, then the expression profile of genes i and
k will be described by correlation function 4. Hence, class
4 can detect correlations in the expression levels of mRNAs
regulated by different TFs.

Transcription factors can be enzymatically modified [10]
[8] [9]. Some modifications include phosphorylation [2] [10],
acetylation [9], and methylation [18]. A TF modification
usually changes the conformation and binding affinity to the
promoter site, which may result in activation or inactivation
of TF’s regulatory role for a specific gene. It is also possible
that the different conformational states of the TF regulate
different gene groups. To encompass the effects of enzymatic
modification we introduce class 5, whose correlation function
is given by

log [mRNA]ij = log
w0 + w1[mRNA]kj

w2 + w3[mRNA]kj
(5)

It is interesting to note that we can also derive class 5 if
the TF-induced transcription rate is comparable to the basal
transcription rate, i.e., the transcription rate in the absence of
any bound TF.

A sixth class emerges when a TF is a repressor of one
gene and activator of another, as in the bacteriophage lambda
system. The same class is derived when a TF has the same
binding affinity for both genes. Its correlation function is linear
in the mRNA domain and is given by

log [mRNA]ij = log (w0 + w1[mRNA]kj) (6)

In describing the six classes, we considered only one TF.
However, all derivations can be generalized to cases where the
gene expression is regulated by multiple TFs with invariant
expression, i.e unaffected by the cluster conditions. For these
general cases, the unchanging TFs will appear as a constant
that is identical for all genes in a group. However, the
expression of a gene group regulated by multiple non-shared
TFs that change across the cluster conditions will not conform
to the any of the six classes. Such cases with more than one
dominant TF have to be modeled explicitly with multivariable
correlation functions.

By assuming a real-valued expression matrix X = {xij |1 ≤
i ≤ M, 1 ≤ j ≤ N}, with xij = log [mRNA]ij , the derived
classes are summarized in the following expressions:




xij = xkj 1stClass
xij = w0 + xkj 2ndClass
xij = w0 + w1xkj 3rdClass
xij = w0 + xkj + log (w1e

xkj + w2) 4thClass

xij = log w0+w1exkj

w2+w3exkj 5thClass

xij = log (w1e
xkj + w2) 6thClass

(7)

B. Metrics

In order to select genes that belong to one of the corre-
lation classes mentioned above, different proximity metrics
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have been considered. We combined metrics with the ap-
propriate data manipulation/preprocessing step for each cor-
relation class. Table I depicts three proximity metrics and
preprocessing techniques, along with the similarity class that
they aim for. We use two data manipulation techniques as
preprocessing steps: (a) row normalization, the substraction of
the row mean from each element and (b) row standardization,
the substraction of row mean from each element and its
subsequent division by the row standard deviation:

x̂ij = xij − x̄i RowNormalization

x̃ij = x̂ij

σi
= xij−x̄i

σi
RowStandardization

(8)

where x̄i =
1
N

N∑
j=1

xij and σi =

√√√√ 1
N

N∑
j=1

(xij − x̄i)2.

Euclidian distance is less complex and more flexible since it
can search for first, second, and third class similarities. Using
euclidian distance without any preprocessing will result in
a class 1 bicluster. On the other hand, if row normalization
is used, the resulting cluster will exhibit class 2 correlation.
Finally, a standardization preprocessing step and subsequent
use of the euclidian distance finds class 3 biclusters. Figure
1 depicts how a class 1,2, and 3 bicluster looks like, both in
raw expression levels and after one of the two preprocessing
steps.

Fig. 1. Class 1,2 and 3 biclusters formed using euclidian distance and differ-
ent preprocessing steps. Experimental conditions(x-axis) have been sorted in
error ascending order in each subplot. The gene expression level is mapped
in the y-axis. Each bicluster has 41 members and every line corresponds
to the expression level of a gene in nine conditions. A class 1 bicluster is
depicted in subplots (a1-a2). The gene expression level of a class 2 bicluster
is shown in (b1), whereas the expression level of the same bicluster after row
normalization is shown in (b2). Finally (c1) and (c2) depict the expression
level of a class 3 bicluster before and after standardization accordingly.

An alternative metric for third class similarities, as well as
the basic metric for the fourth and fifth class, is the mean
squared deviation from a Least Squares regression. Assume
vectors

�xk =




xk1

xk2

. . .
xkm


 , �xi =




xi1

xi2

. . .
xim


 , �w =




w0

w1

. . .
wd




and matrix Xk = [1m| �x1
k| . . . | �xd

k], where 1m is a m-
dimensional vector of ones, kε[1, 2, . . . , L] and �xd

k is the
vector created when each element of �xk is raised in the dth

power. We want to determine �w so that the sum of squared
errors is minimum, that is

Θ = argmin
�w

L∑
k=1

‖�xi − Xk �w‖2

The solution is given by:

�w =

(
L∑

k=1

XT
k Xk

)−1 L∑
k=1

XT
k �xi (9)

Therefore, we can easily evaluate the correlation of any new
(gene) vector xi to a group of L vectors.

C. Algorithms

Most biclustering algorithms start from a random matrix
row or column and try to end up with a bicluster whose mem-
bers have a certain type of correlation. Moreover, the number
of conditions and members in the resulting bicluster is usually
picked by an arbitrary user-defined threshold. Although this
approach may work adequately for gene groups that exhibit
strong correlation, it severely compromises the performance
in the general case. Our approach makes use of the already
known biological information to find functionally enriched
biclusters and estimates the optimum initial parameters for our
biclustering algorithm. The first is implemented by starting
from a subset of genes that are biologically proven to be
related, whereas the latter is achieved by introducing a scoring
function.

Furthermore, combination of different metrics in 2D space
and use of a non-linear kernel classifier such as support vectors
machines, yields higher performance in all cases.

1) Single-metric classification: The basic idea in both al-
gorithms presented here is identical: Given a subset of genes
that are known to be correlated, cluster together genes whose
expression can be described using the correlation functions
(1-5). Algorithm 1 clusters genes with correlation of type 1,2,
and 3 , whereas algorithm 2 is used for searching class 3,4,
and 5 similarities. In algorithm 1 all metrics of table I can be
used, by adjusting the preprocessing step accordingly.

Algorithm 2 uses solution (9) to calculate �w. Then, it finds
genes and conditions that approximate better the correlation
function of a certain class. The correlation functions of classes
3 and 6 are linear functions in the log(mRNA) and mRNA
domain respectively, hence the application of a least squares
method is obvious. In addition, both class 4 and 5 correlation
functions can also be approximated by polynomials. More
specifically, exponentiation of 4 results to

[mRNA]ij = w0w1[mRNA]2kj + w1w2[mRNA]kj

= w′
2[mRNA]2kj + w′

1[mRNA]kj

Thus, in the [mRNA] domain the correlation function of class
4 is a second order polynomial with the zero order term absent.
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TABLE I

SIMILARITY - PROXIMITY METRICS

PREPROCESSING
Name Metric without with row with row

Normalization Normalization Standardization

Euclidian(�xi , �xk)

√√√√ J∑
j=1

(xij − xk,j)2 Class 1 Class 2 Class 3

Mean squared residue(X)
1

MN

∑
iεM,jεN

(xij − x̄i − x̄j − x̄)2 Class 2 Class 2 Class 3

Pearson Correlation(�xi , �xk)

∑
jεJ

(xij − x̄i)(xkj − x̄k)

√∑
jεJ

(xij − x̄i)
2
∑
jεJ

(xkj − x̄k)2
Class 3 Class 3 Class 3

Algorithm 1 - Clusters of Correlation Class 1,2,3
Input(X,C,L,K,I):

A data matrix X of size MxN, the correlation class C, an initial
expression submatrix L of correlated genes in all N conditions, the
number K of initial columns and I, the number of members of the final
bicluster.

Output(B):
An IxJ bicluster B, whose members exhibit class C correlation.

Preprocessing:
Depending on C and the metric used, perform normalization or stan-
dardization on X, as depicted on Table I.

Initialization:

• Calculate the metric distance for submatrix L in all N columns.
• Sort the columns in ascending distance order (smallest distance

first).
• Form initial I′xJ bicluster B, where I’=rows(L) and J=K.

Row addition:

• ∀iεM and ∀jεJ , compute the mean row metric distance Erowi

to the center of B. Example: If metric=Euclidian, Bij and Xij

elements of ith row and jth column of matrices B and X, then
compute

Erowi =
1

J

J∑
j=1

(Xij − 1

I′

I′∑
o=1

Boj)
2

• Add the row with the smallest distance Ei to B and remove it
from initial matrix.

• Set M = M − 1, I′ = I + 1. Continue until I′ = I .
Column addition

Compute the column variance V arcolj for the rest N −K columns in
X. Add any column j with a column variance less than the mean column

variance of the bicluster, i.e. satisfy: V arcolj ≤ 1

K

K∑
o=1

V arcolo

Similarly, after a first order Taylor expansion in the mRNA
domain, class 5 gives rise to a second order polynomial:

[mRNA]ij = w0+w1[mRNA]kj

w2+w3[mRNA]kj

∼= w0+w1[mRNA]kj

w2
(1 − w3

w2
[mRNA]kj + . . .)

= w′′
2 [mRNA]2kj + w′′

1 [mRNA]kj + w′′
0

where w′′
2 , w′

2, w
′′
1 , w′

1, w
′′
0 , w′

0 are constants.
An interesting question is how to find the optimum initial

parameters, namely the number of initial columns K and final

Algorithm 2 - Search for Correlation Class 3,4,5,6
Input(X,C,L,K,I):

A data matrix X of size MxN, the correlation class C, an initial
expression submatrix L of correlated genes in all N conditions, the
number K of initial columns and I, the number of members of the final
bicluster.

Output(B):
An IxJ bicluster B, whose members exhibit class C correlation.

Preprocessing:
For class 4,5 or 6, exponentiate each element in matrix X.

Initialization:

• Calculate for submatrix L the mean deviation from the correlation
function of class C.

• Sort the columns in ascending distance order (smallest distance
first).

• Form initial I′xJ bicluster B, where I’=rows(L) and J=K.
• Set x1 = [B11B12...B1K ].
• Set

– Xk = [1K |�xi] for class 3 or 6
– Xk = [�xi|�x2

i ] for class 4
– Xk = [1K |�xi|�x2

i ] for class 5
• compute �w from equation (9), i.e.

�w =

(
L∑

k=2

XT
k Xk

)−1 L∑
k=2

XT
k �x1

Iteration:

• calculate Ei =

I′∑
k=1

‖�xi − Xk �w‖2∀iεM.

• Add the row with the smallest distance Ei to B and remove it
from initial matrix.

• Set M = M − 1, I′ = I + 1. Continue until I′ = I .
• Calculate mean correlation function deviation for the rest N-K

columns and add any column with less than the mean deviation
of the K columns.

row size I of the bicluster. To address this question, we
introduce the following scoring function:

Score = w1Sensitivity + w2Specificity + w3Precision (10)

where w1, w2, w3 are weights equal to 1
3 for the unbiased

case. The initial parameters(K,I) that maximize expression (10)
are the ones that yield the most enriched bicluster. Figure 2
demonstrates how the score calculated by (10) identifies the
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initial parameters for correlation class 1,2, and 3, starting from
2 initial genes(L=2). For example, for class 1 it turns out that
the resulting bicluster is highly enriched when (K,I)=(10,115).
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2 4 6 8 10 12 14 16

0.4

0.6

0.8
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10
25
40
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100
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130
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160
175
190
205
220
235
250
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280
295
310

10 conditions, 115 members, 0.5418 score

17 conditions, 70 members, 0.6801 score

2 conditions, 55 members, 0.8869 score

Fig. 2. Scoring function as selection method for the size of final bicluster
and number of initial columns. Each line represents a bicluster of a certain
size. The number of conditions are sorted in ascending scoring order and are
mapped on x-axis. Each subplot corresponds to a class, namely class 1,2 and
3. The legend shows the number of members (I) of the final bicluster for each
case.

2) Multi-metric classification: Although correlation func-
tions based on TF regulatory networks help identify groups
with members that share the same TF mechanism, there is no
guaranty that they will perform equally well in groups with
higher regulatory complexity. Since many functional category
groups have multiple substructures, one may expect that any
single correlation function algorithm will be able to recover a
specific subgroup at most.

For this reason we developed a multi-class/multi-metric
methodology methodology similar to [17]:

1) Split the microarray data matrix in a training and a test
set.

2) For certain initial parameters and for each correlation
class, create a bicluster by using Algorithms 1 and 2 on
data from the training set.

3) Compare the number of true positive genes in all biclus-
ters and the amount of overlap. Select the two with the
minimum amount of overlap.

4) For all genes in the data matrix, compute the mean
deviation from the center of the selected biclusters (as
in algorithms 1 and 2). This corresponds to two rep-
resentative numbers (correlation errors) Eclassi , Eclassj

for each gene.
5) Train a classifier (SVM or any other nonlinear classifier)

with Eclassi , Eclassj as features. Finally, evaluate its
performance on the test set.

D. Dataset and Group Selection

All simulations were performed on a Saccharomyces cere-
visiae cell cycle expression data, initially produced by Cho
et al. and normalized by Church [3]. The dataset contains
2884 genes in 17 conditions. Missing values were replaced
by random numbers for simplicity.

The functional category evaluation presented here was fo-
cused on four distinct gene groups downloaded from Stan-
ford’s Saccharomyces cerevisiae database [28], namely the
structural constituent of ribosome, structural molecular activ-
ity, dna binding, rna binding. The group selection was based
on the number of members, diversity and expected correlation.
Moreover, we tested our method in groups of genes that bind
to common TFs as identified by ChIP experiments [18].

For comparison purposes, the metric used with Algorithm 1
for the creation of all graphs was euclidian distance, and the
initial “seed” subset had only two members(genes), randomly
selected from all positive samples. Classes one to five were
evaluated in this study. In multi-class evaluation, the training
to testing ratio was 2:1 for both positives and negative samples.

III. RESULTS

A. Single Class

Figure 3 illustrates the performance of Algorithm 1 and 2
when searching for the first five classes. For class 3, both
algorithms where used (Algorithm 1 and 2 are mapped to
“class3” and “class3/LS” accordingly). Table II illustrates
the number of true positive (TP) and false positive (FP)
members, as well as the p-values (hypergeometric distribution)
for the resulting biclusters corresponding to all five correlation
classes, with initial values picked by the presented scoring
function.

A general observation that arises from figure 3 is the
absence of a universal class, a class that outperforms all others
in classification. For example, in the ribosomal group the
dominant class is 3, whereas in the RNA binding it is class
5. This is somewhat expected: The regulatory mechanism of
ribosomal genes is much less complex than its RNA binding
counterpart. Thus, a more general class, such as class 5 is
required in the latter case in order to capture the features of
the RNA binding group. It has also been reported that a TF
for ribosomal genes is Fhl1. We verified this observation by
analyzing the ChIP data available in [18] and extended the
ribosomal specificity to the fusion of other two TFs, ADR1 and
ARG80 (out of 52 common targets 46 are ribosomal genes).
On the other hand, RNA and DNA binding genes do not have a
universal dominant TF. Hence, although ribosomal expression
is highly correlated, an observation that explains the good
overall performance of all classes in figure 3, we cannot expect
this to be true for the DNA/RNA binding group.

The classification performance of the Algorithm 2 - class
3 combination for the DNA binding group performs better
than most metric-class combinations, including Algorithm 1 -
class 3 combination. Algorithm 2 is sensitive to anti-correlated
genes, i.e. genes with odd symmetry in their expression levels.
Anti-correlated expression is more likely to happen in complex
regulatory mechanisms, where TF cascades can be formed.
This is what is also happening in the DNA binding case.
Moreover, by comparing the plots of less complex groups
(ribosomal and structural activity groups, plots (a) and (b))
to these with higher regulatory complexity (DNA and RNA
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Fig. 3. Precision - Recall Curves for all five correlation classes and for four distinct functional groups. Each graph is created by running algorithms 1 and
2 with 20 random initial ‘seed’ subsets L, that containing only two genes each. Bicluster size I ranges from 10 to 150 genes and initial condition number K
ranges from 2 to 17. The initial two genes (the “seed” subset) are selected from the positive sample pool. The positive sample pool is also the reference in
respect to which the true/false positive/negative numbers are calculated in each subplot and it consists of (a) ribosomal genes (126 members) (b) structural
activity genes (178 members) (c) DNA binding activity genes (114 members) (d) RNA binding activity genes (121 members). Solid lines represent the average
precision-sensitivity over the 20 random seeds when the scoring function was utilized in order to determine the optimum (I and K) parameters as described
in the methods section. Dotted lines depict the average precision-sensitivity over 20 random seeds L, all bicluster sizes I and initial condition numbers K.

binding) it becomes clear that Algorithm 1 - class 3 works
better in the first whereas Algorithm 2 - class 3 in the latter.

From the precision - recall curves, the importance of the
parameter selection step that was presented in algorithmic
section becomes clear. The biclusters that are formed with
initial parameter selection are significantly more enriched than
the average case. This observation is also consistent with our
ChIP data findings (not shown here).

B. Multi-class

Figure 4 illustrates the classification of ribosomal genes,
using the error score of two correlation classes. By combining
two different classes, we were able to improve the clustering
performance in the ribosomal group by an average of 12.6%
when compared to the best single Algorithm - class combina-
tion (Algorithm 1 - Class 3). Note that the various correlation
error pairs have non-similar spatial topology. Thus, the pair
we select to serve as a feature can significantly change the
performance of the method.

The potential of the multi-class fusion methodology stems
not only from the fact that it takes into account different
regulatory mechanisms, but also from its ability to exploit any
special relationship our data may have (noise correlation and
canceling, linear dependency, etc). For example, in figure 4(d),
the true positive samples exhibit an almost linear relationship
to class 2 and 3.

IV. CONCLUSIONS

By explicit modeling of regulatory networks that control
gene expression, we derived six classes that capture distinct
correlation functions between the expression levels of genes
regulated by common TFs. Each class predicts the expres-
sion of genes that are regulated by the specific mechanisms
outlined in the methodology section. Therefore, each class is
mechanism-specific and preferentially identifies genes whose
expression is regulated by the mechanisms used in its deriva-
tion. The expression levels of genes regulated by common
TFs are predicted with highest sensitivity and precision by a
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TABLE II

FUNCTIONAL ENRICHMENT - RIBOSOMAL BICLUSTER

Class 1 Class 2 Class 3 - Alg. 1 Class 3 - Alg. 2 Class 4 Class 5
Funct. Group Members TP/FP P TP/FP P TP/FP P TP/FP P TP/FP P TP/FP P

Ribosomal 121 66/32 -74.68 68/27 -80.29 81/32 -98.80 71/26 -85.61 70/28 -82.92 73/22 -91.21
Structural 178 13/5 -12.10 19/1 -22.11 55/8 -60.93 78/27 -78.08 17/2 -18.70 76/37 -70.37

DNA Binding 114 7/7 -6.47 5/15 -5.22 6/14 -4.11 6/8 -5.12 4/12 -2.57 4/10 -2.80
RNA Binding 121 19/14 -18.09 10/4 -10.99 6/9 -4.77 8/8 -7.14 8/8 -7.14 8/8 -7.14
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Fig. 4. Representation of correlation error (Eclass) for class 1,2, and 3. Red stars are the ribosomal genes (positives samples), whereas black crosses
represent the non-ribosomal genes in the data set. In (e), the ribosomal/non-ribosomal genes are depicted with squares/crosses, the color red is used for the
training and the color blue for the test samples. A RBF kernel was used with N-fold cross validation for the selection of kernel parameters.

single class. In addition, different coregulated gene groups are
predicted best by different classes.

These findings are consistent with the experimental evidence
suggesting that gene regulatory networks can be diverse and
gene specific. Since the performance of a certain correlation
class depends on the underlying regulatory mechanism, our
approach can also be applied in order to determine possible
regulatory mechanisms within groups and further evaluate
their statistical significance by making use of microarray
expression data.

Moreover, we presented two effective biclustering algo-
rithms and a multi-class classification technique that utilizes
the correlation functions mentioned above. The proposed
framework and algorithms can easily be expanded to include
gene groups regulated by multiple TFs and more complex
regulatory mechanisms. Such future extensions are likely to
have improved performance in classification of more diverse
gene groups and identification of their regulatory elements.
Additionally, a class integration criterion, possibly estimating
interclass mutual information, would boost the performance
multi-class classification technique. Finally, it would be in-
teresting to combine the newly derived gene classes with
more appropriate condition/experiment correlation functions
to further improve the classification performance.

V. APPENDIX

A. Thermodynamics model

For a gene transcription system with M repressors and N
activators, we define:

• s as the state number.

• ∆G as the difference of free energy in respect to the
ground state.

• ks the transcription initiation rate for a specific state s.
• as

i The multiplicity (number of molecules) of activator i
in state s.

• rs
j The multiplicity (number of molecules) of repressor j

in state s.

In equilibrium and allowing the multiplicity being different
than one, the probability that the system is in each of the
possible (a1+1)(a2+1) . . . (aN +1)(r1+1)(r2+1) . . . (rM +
1)2N+M states can be described by partition functions. The
probability of the system being in any distinct state s0 is given
by:

P (s0) =
e

−∆G
RT [Repr1]

r
s0
1

s0 . . . [ReprM ]
r

s0
M

s0 [Act1]
a

s0
1

s0 . . . [ActN ]
a

s0
N

s0∑
s

e
−∆G
RT [Repr1]

rs
1

s . . . [ReprM ]
rs

M
s [Act1]

as
1

s . . . [ActN ]
as

N
s

(11)
If ks is the transcription initiation rate for the state s and

RNA polymerase is abundant the total transcription rate will
be

F (Act1, Repr1, . . .) =
∑

s

ksP (s) (12)

The chemical equation for [mRNA]i can be modeled with
a differential equation [1]:

d([mRNA]i)
dt

= F (Act1, Repr1, . . .) − kdeg[mRNA]i (13)
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where kdeg is the degradation rate of [mRNA]i and F is
given by (12). In equilibrium, equation (13) becomes

[mRNA]i =
F (Act1, Repr1, . . .)

kdeg
(14)

By using equations (11-14), any possible combination of
transcription factors, binding affinity, binding site multiplicity,
transcription initiation rate can be solved and their correspond-
ing classes studied.

B. Class Derivation

Without loss of generality, we assume one common TF and
multiplicity equal to one. State ‘1’ is the unbound state and
k1 is the basal transcription initiation rate. From (11 - 14) we
have:

[mRNA]i =
k1 + k2e

−∆G2
RT [TF ]

kdeg(1 + e
−∆G2

RT [TF ])
(15)

and

[mRNA]k =
k′
1 + k′

2e
−∆G′

2
RT [TF ]

k′
deg(1 + e

−∆G′
2

RT [TF ])
(16)

Solving (15) for [TF] and substituting it to (16) yields

[mRNA]k =
A[mRNA]i + B

C[mRNA]i + D
(17)

where • A = (k′
1kdege

−∆G2
RT − k′

2k
′
dege

−∆G′
2

RT )

• B = (k1k
′
2e

−∆G′
2

RT − k2k
′
1e

−∆G2
RT )

• C = kdegk
′
deg(e

−∆G2
RT − e

−∆G′
2

RT )

• D = k′
deg(k1e

−∆G′
2

RT − k2e
−∆G′

2
RT )

Equation (17) represents the general case and provides
the relationship between [mRNA]k and [mRNA]i. Since
the terms in parenthesis are constants, the above result to
correlation function 5. Now we consider the following special
cases :

• TF is an activator for both genes and basal level of
expression is minimal when compared to the expression
level of the state where TF is bound. In other words
k1 = k′

1 = 0, which transforms (17) into a class 4
correlation function.

• TF has the same binding affinity for both genes, i.e.
∆G′ = ∆G, or TF is activator for the one gene and
repressor for the other. This yields a class 6 correlation
function.

• TF has the same binding affinity for both genes and the
basal level of expression is minimal compared to the TF
bound expression level. Thus, with ∆G′ = ∆G and k1 =
k′
1 = 0, we get from (17) a class 2 correlation function.

• When binding affinity, basal level of expression and
degradation rate is the same, we get class 1 similarity
(all previous class 2 constrains and kdeg = k′

deg).
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