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Preclinical models are ubiquitous and essential for drug discovery, yet our 
understanding of how well they translate to clinical outcomes is limited. In this 
study, we investigate the translational success of treatments for Clostridium difficile 
infection from animal models to human patients. Our analysis shows that only 
36% of the preclinical and clinical experiment pairs result in translation success. 
Univariate analysis shows that the sustained response endpoint is correlated with 
translation failure (SRC  =  -0.20, p-value  =  1.53 × 10−54), and explainability analysis of 
multi-variate random forest models shows that both sustained response endpoint 
and subject age are negative predictors of translation success. We have developed 
a recommendation system to help plan the right preclinical study given factors 
such as drug dosage, bacterial dosage, and preclinical/clinical endpoint. With 
an accuracy of 0.76 (F1 score of 0.71) and by using only 7 features (out of 68 
total), the proposed system boosts translational efficiency by 25%. The method 
presented can extend to any disease and can serve as a preclinical to clinical 
translation decision support system to accelerate drug discovery and de-risk 
clinical outcomes.
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Introduction

Clostridium difficile is a spore-forming anaerobic bacteria widely distributed in the 
intestinal tract of humans and animals and in various environmental contexts (Smits et al., 
2016). Over the past decade, the frequency and severity of C. difficile infection (CDI) have 
been increasing worldwide to become a leading nosocomial (hospital-acquired) pathogen 
(Czepiel et al., 2019). It is estimated to affect approximately 3 million individuals worldwide 
every year (Cole and Stahl, 2015), underscoring its significant public health impact. Although 
various treatments, such as metronidazole and oral vancomycin (Zar et al., 2007; Johnson 
et al., 2014; Teasley et al., 1983), have been approved for CDI management, the sustained 
efficacy, the effectiveness of treatment after the treatment is no longer administered, is low 
(Van Giau et al., 2019). This is particularly concerning given the recurrent nature of CDI (Cole 
and Stahl, 2015; McFarland et al., 1999), where the sustainability of treatment efficacy (the 
ability to prevent recurrence post-therapy) is crucial.

A predominant challenge in the development of treatments for Clostridium difficile, as 
with many diseases, lies in the limited rate of translational success from preclinical to clinical 
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stages. For example, the chance of a potential drug candidate identified 
in the preclinical trials demonstrating efficacy in human studies and 
ultimately receiving approval is a mere 0.1% (Seyhan, 2019). Therefore, 
the development of a new drug is a time-consuming and costly process 
that often takes an average of 13 years and costs approximately 
US$1 billion (Ciociola et al., 2014) from the preclinical testing stage to 
FDA approval. The major causes for such translation failures are the 
lack of appropriate animal models for predicting the efficacy of the 
drug in humans (Seyhan, 2019; Paul et al., 2010), concerns for the 
efficacy and safety of the drugs (Kola and Landis, 2004), poor study 
design, ineffective site selection, poor recruitment, patient burden, 
and poor trial execution (Fogel, 2018). Efforts to enhance translational 
success have included the use of humanized animals, which exhibit 
more human-like responses to medical interventions (Shultz et al., 
2007), and the application of biomarkers to reduce subjectivity in 
evaluating drug efficacy and safety (Yu, 2011). Machine learning-
based approaches (Shah et al., 2019; Toh et al., 2019; Gayvert et al., 
2016) have also been explored, predominantly focusing on attrition 
rates across different phases of clinical trials. However, these 
approaches often lack explainability due to the ‘black box’ nature of 
the models employed, interfering with their application in decision-
making with high stakes (Lipton, 2017). Although machine learning 
models have shown promising results in other areas of life sciences 
(Lysenko et al., 2018; Wang et al., 2020; Eetemadi and Tagkopoulos, 
2019), their application in bridging the gap between preclinical and 
clinical outcomes is hindered by a scarcity of expert-curated and 
harmonized datasets (Austin, 2021). This limitation is particularly 
pronounced in the context of C. difficile, where the complexity of the 
disease and its treatment modalities necessitates highly specialized 
and accurate data for effective model training and validation.

In this study, to address the data scarcity, we manually curate the 
Animal-to-Human (A2H) translation dataset by extracting and pairing 
preclinical and clinical data for C. difficile infections from the scientific 
literature and ClinicalTrials.gov, respectively. Using our A2H dataset, 
we train a machine learning-based classifier to predict translational 
success (Figure 1a). Next, to address model interpretability, we apply 
an explainable AI method (Lundberg and Lee, 2017), and then 
we expand this predictor to a recommendation system (Figure 1b).

Materials and methods

Raw data acquisition

Clinical trial data about C. difficile infection (CDI) were collected 
from ClinicalTrials.gov, a comprehensive database of privately and 
publicly funded clinical studies. This study focused exclusively on 
completed interventional clinical trials that have published results to 
ensure the reliability and validity of the data. Parallel to clinical trial 
data collection, a thorough search was conducted on PubMed to 
identify publications that tested the same intervention (i.e., drug 
candidate) in an animal model as one of the clinical trials in our 
collection. Note that within the scope of a single trial, multiple 
experimental arms may be present, each contributing to the collective 
dataset. Here, an ‘arm’ is delineated as a cohort or subset of subjects 
receiving a particular therapeutic regimen (Ventz et al., 2018; Clinical 
and Designs, 2019). For instance, if a trial investigates two distinct 
treatment dosages, each dosage arm is a cohort that can have multiple 

individuals (or samples; animals for preclinical and humans for 
clinical studies, respectively). This resulted in a preclinical dataset of 
480 arms from 43 preclinical trials, collectively consisting of 3 animal 
species, 60 interventions (drug candidates), and 29 variables. Similarly, 
the clinical dataset has 158 arms from 52 clinical trials, collectively 
consisting of 53 interventions (drug candidates) and 21 total variables. 
The raw data and variable description can be  found in 
Supplementary Data 1.

Data compendium

Due to the different interests in the endpoints measured in animal 
and human subjects, the number of preclinical and clinical trials that 
share the same endpoints is limited. For example, the survival rate is 
predominantly measured in preclinical trials, while the recovery rate 
is more often used in clinical trials for CDI. The survival rate indicates 
the ratio of living subjects, while the recovery rate indicates the ratio 
of healthy patients in the group at the point of measure. These two 
rates both reflect drug efficacy (Zhuang et al., 2009), making them 
more comparable and relevant for evaluating the effectiveness of 
treatments in both preclinical and clinical trials. In this section, 
we  describe a strategy to derive translation outcome using these 
survival and recovery rates.

For preclinical studies, 480 arms with 27 variables were gathered, 
including specifics of animal (e.g., species, strain, sex, age, weight), 
disease model (e.g., administration sequence, disease strain), and drug 
(e.g., dosing, duration). For clinical studies, 272 arms with 15 variables 
were collected, encompassing aspects like dosage details, intervention 
class, therapeutic approach, and participant demographics. We then 
paired the preclinical and clinical trial arms that tested the same 
intervention (drug candidate) to construct an A2H dataset, which 
consists of 6,918 samples and 42 variables (27 from preclinical trials 
and 15 from clinical trials) after data cleaning and dropping 8 variables 
from the raw datasets (Supplementary Information Section 1.1; 
Supplementary Data 2). To analytically assign the binary dependent 
variable, we  first calculated the difference between recovery and 
survival rates, denoted as δ  (Equation 1), for each sample in the paired 
dataset as follows:

 1.0 1.0,r sr rδ− ≤ = − ≤  (1)

where 0.0 1.0sr≤ ≤  is the survival rate for animal subjects in the 
preclinical study, and 0.0 1.0rr≤ ≤  is the recovery rate for human 
subjects in the clinical study. We  then fit a normal distribution 
(Equation 2) to these deltas as

 ( )~ , ,Nδ µ σ  (2)

where mean (µ) and standard deviation (σ ) estimate the standard 
distribution of δ . We assigned the binary label as follows:

 ( )1  : ,δ σ< ∗translation success c| |
  

 ( )0  : ,δ σ≥ ∗translation failure c| |  (3)
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where c is a coefficient that controls the strictness of the translation 
success (Equation 3). We visualized our performance statistics using the 
A2H dataset with labels assigned with 0.5c = . However, different choices 
of c were also analyzed and reported (Supplementary Figure 1).

Model selection

To find the most predictive machine learning model for our 
preclinical-to-clinical translation, we implemented a model selection 
pipeline that chooses the best data preprocessing combination and 
classifier. The categorical variables were transformed into input 
features applicable to machine learning using one-hot encoding. The 
pipeline includes, in the order specified, 2 feature scaling [Standard 
(Pedregosa et  al., 2011) and MinMax (Pedregosa et  al., 2011)], 1 
missing value imputation (MVI) method [Simple (Pedregosa et al., 
2011)], 1 oversampling (OS) [SMOTE (Chawla et al., 2002)], and 3 
classifiers (CLS) [random forests (Breiman, 2001), AdaBoost (Freund 
and Schapire, 1997), MLP (Hinton, 1990)]. We rigorously tested each 

possible permutation of these preprocessing steps combined with a 
classifier using a 5-fold cross-validation approach to ensure robust 
evaluation, where each split was stratified, and samples from the same 
preclinical and clinical pair were grouped while splitting 
(Supplementary Information Section 1.2). Moreover, a grid search was 
performed on the classifiers to find the optimal hyperparameters using 
the validation set. Ultimately, the model candidate with the highest F1 
score was selected as the best model. We  have provided more in 
detailed information in Supplementary Information Section 1.3.

Model interpretability

To increase the interpretability of the model, we applied the Shapley 
Additive Explanations (SHAP) (Lundberg and Lee, 2017) algorithm. 
The greater the magnitude of the SHAP value of a feature, the more 
influence that feature has on the model output. SHAP can provide the 
local explanation for each sample and the global explanation for an 
entire class by summarizing the overall importance of features across 

FIGURE 1

Overview of the preclinical recommendation system. (a) We collect data from publicly available preclinical and clinical trial information about 
Clostridium difficile infection. This dataset, designated as A2H, is constructed by pairing the preclinical trial with the clinical trial that shares the same 
drug. A binary classification label is applied to each pair, where a translation is successful (label 1) if the preclinical survival rates and clinical recovery 
rates are within a threshold δ . Then, a machine learning pipeline chooses the best combination of feature selection, missing value imputation, outlier 
detection, and classifier. We report the model performance and feature interpretation and predictions. (b) For any specified clinical trial of interest, our 
system computes a translation score for each candidate preclinical trial. This score quantitatively assesses the potential for successful translation. The 
preclinical trial that emerges with the highest translation score is then preferentially chosen to inform the design of the ensuing preclinical study.
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all data points. In this study, we used SHAP to analyze features that are 
influential in general to determine translation success.

Results

Experimental features correlated to 
preclinical to clinical translation success

Figure 2a depicts the spectral biclustering (Kluger et al., 2003) of 
the 5,851 preclinical-clinical pair samples, excluding control 
intervention and inconvertible unit samples from the original 6,918, 
across the 68 features after performing one-hot encoding to the original 

42 variables. From top to bottom, the fourth and sixth row clusters were 
associated with the lowest and highest average translation success rates 
of 0.25 and 0.45, respectively. We found that the row cluster with the 
lowest average translation success rate differentiated from other clusters 
due to its unique disease model, which challenged first and then treated 
animals with clindamycin (p-value<4.77 × 10−122). Similarly, the cluster 
with the highest average translation success rate had adopted C. difficile 
strains (e.g., VA11, 2,926, VA5, TTU 614) that were significantly 
different from those used in other clusters (p-value<7.2 × 10−13). A 
t-SNE plot for the A2H dataset can also be  found in 
Supplementary Figure 2. The distribution of success metrics in both 
preclinical and clinical trials, specifically focusing on the survival and 
recovery rates, respectively, are shown in Figures 2b,c. These rates are 

FIGURE 2

Statistics of the A2H dataset. (a) The spectral biclustering (Krow = 8 and Kcol = 59) plot of the A2H dataset with δ σ<| | 0 .5 . The vertical and horizontal red 
dashed lines separate column and row clusters, respectively. The features on the x-axis with colons in their names represent categorical features after 
one-hot encoding, and the string after the colon corresponds to the original category when the encoded feature is 1. The features without colons in 
their names represent numerical features, and the Min-Max scaling is performed on each numerical feature independently. (b) The distribution of the 
survival rate from the preclinical trial. (c) The distribution of the recovery rate from the clinical trial. (d) The distribution of delta δ = −r rr s , the 
difference between the clinical trial recovery rate and the preclinical trial survival rate. After fitting the normal distribution ( )~ ,δ µ σN  to the delta, 
we label the preclinical/clinical trial pairs translation success (label 1) if δ  lies between 0.5σ±  around, and translation failure (label 0) otherwise. (e) 
Top 10 features with the highest absolute Spearman correlation coefficients for thresholds 0.5δ σ< ∗ , where δ  is the different between clinical 
recovery and preclinical survival rates, and σ  is the standard deviation of δ . All the features have adjusted p-value <0.001.
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skewed toward the right, partly due to the use of existing drugs like 
vancomycin and metronidazole as controls in case–control studies 
(Kaye et al., 2005). Delta (δ ), the difference between the recovery rate 
and survival rate used to assign the target variable (translation success/
failure) (see Methods), was modeled using a normal distribution as 

( )~ 0.09,0.41Nδ  (Figure 2d). We labeled the preclinical and clinical 
trial pairs (see Methods) that fell within ±0.5 standard deviation of 

0.0δ =  as ‘translation success.’ (3,746 samples) and ‘translation failure’ 
otherwise (2,105 samples) (Figure 2d). Spearman correlation coefficient 
of the features with the dependent variable lists 8 preclinical features as 
the top 10 most correlated features (Figure 2e), among which sustained 
response endpoint (i.e., outcome measured 14 days after the treatment) 
of the clinical trial was most negatively correlated to translation success 
(SRC = -0.20, p-value = 1.53 × 10−54).

Machine learning models accurately 
predict translation success

We implemented the model selection pipeline on A2H datasets 
created using different translation thresholds c (0.0625, 0.125, 0.25, 
0.5, 1.0, and 2.0) (see Methods). In every scenario during the cross-
validation process, the random forest model emerged as the 
top-performing classifier (Supplementary Table 1). Notably, 
we observed an improvement of the F1 score when applying SMOTE, 
especially for thresholds defined by smaller c (F1 improved 126.3, 
124.9, 39.3, and 2.7% for c of 0.0625, 0.125, 0.25, 0.5, respective; 
Supplementary Figure 3). Running the sequential feature selection 
(Raschka, 2018) (SFS) in a parsimonious setting (smallest feature 
subset that is within one standard error of the best cross-validation F1 
score) on the best pipeline with 0.5c =  (FS: none, MVI: Simple, OS: 
SMOTE, CLS: random forest) significantly reduced the required 
number of features by 76.5% from 68 to 16 with negligible 0.8% 
performance loss (validation set F1 score decrease from 0.75 to 0.74) 
as shown in Figure  3a, where the results for other value of c can 
be  found in Supplementary Figure 4. Moreover, we  were able to 
achieve validation set F1 score of 0.73 with only 7 features identified 
using the Kneedle elbow method (Satopaa et al., 2011; Figure 3A). 
Table 1 further shows the holdout test set performance for different 
numbers of features for the best model. The best model pipeline for 
the benchmark A2H dataset ( 0.5c = ) on the holdout test set achieved 
a 25% better F1 score than a random baseline (0.69 vs. 0.56, 
respectively), while AUCPR and AUCROC were 0.68 and 0.82, 
respectively (Figures 3b–d). For all six different translation thresholds 
c except when 2.0c = , we had better performance than the random 
baseline (Figure 3c; Supplementary Table 2).

Sustained response endpoint and subject 
age as predictors of translation success

We analyzed the feature importance of the best model for each c 
using five ranking methods: sequential feature selection, linear 
discriminant analysis (LDA), Pearson correlation coefficient (PCC), 
impurity-based feature importance of random forest (RF), and SHAP 
as shown in Figure 4a for c = 0.5. Of the 16 features selected by SFS, 
only three were from clinical features. The five ranking methods 
consensually identified whether clinical and preclinical endpoints 

were sustained or acute as most influential to the translation prediction 
(mean rank = 1 and 2.2). We found that RF and SHAP could highlight 
the importance of dosage-relevant features, while linear methods like 
LDA and PCC could not. A further investigation of SHAP values 
provided more detailed insights into the relationship between feature 
values and their impact on predictions. Specifically, the model 
considered sustained preclinical and clinical endpoints would decrease 
the translation success probability (mean SHAP value = −0.14 for 
both). This observation can be explained by the significantly lower 
translation success for samples with sustained preclinical and clinical 
endpoints compared to those with at least one acute endpoint (p-
value = 3.3 × 10−10). The model also considered younger subjects for 
both animals and humans would be more likely to result in translation 
failure, with the animal age being highly correlated with the SHAP 
value (p-value = 3.9 × 10−298), with a smaller animal age value resulting 
in a more negative impact on translation success probability. Also, for 
the human subjects, the SHAP value of the child age group was 
significantly smaller than the more-aged group (mean SHAP 
value = 0.01 vs. -0.18; p-value = 8.7 × 10−164). The SHAP performance 
for other c can be found in Supplementary Figure 5.

Discussion

Our research underscores the importance of refined preclinical 
strategies in drug development, a principle that holds true across 
various medical fields. The necessity for improved preclinical 
approaches, as indicated by the frequent phase III failures due to a lack 
of responder hypothesis-based trials (Sun et al., 2022), aligns with our 
findings, where a machine learning model driven by a selective feature 
set significantly enhanced the predictability of translational success.

Our choice to focus on C. difficile in this study stems from several 
key considerations. Firstly, the existence of well-established rodent 
models for C. difficile infection closely mimics the human disease and 
provides a robust basis for preclinical studies, therefore allowing for 
more accurate predictions of clinical outcomes. Additionally, the 
pressing need for improved treatment strategies for C. difficile 
infections, given their increasing prevalence and public health impact, 
underscores the practical significance of our research. Furthermore, 
the localized nature of C. difficile infections in the gut (Best et al., 
2012), as opposed to systemic diseases, presents a unique opportunity. 
It allows for more controlled study parameters and a clearer 
understanding of treatment effects, which are critical for the successful 
application of machine learning techniques in predicting translational 
outcomes. This aspect is particularly vital in lightening the complexity 
that often accompanies the study of systemic diseases, where multiple 
organ systems and a myriad of physiological factors can confound 
results (Manor and Lipsitz, 2013).

There are a few areas of improvement. First, we assumed a direct 
and linear relationship between preclinical survival rates and clinical 
recovery rates. Yet, it is important to acknowledge that these metrics, 
while informative, may not fully capture the multifaceted nature of 
trial outcomes. Future studies could benefit from incorporating 
additional endpoints, such as percent weight change, patient-
reported, and quality-of-life assessments, to provide a more 
comprehensive evaluation of trial success as well as the clinical utility. 
This, however, would result in a more complicated definition for 
translation success, which, in the future, would require us to provide 
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better explanations for our recommendations such that they would 
be  trustworthy and actionable for drug development researchers. 
Second, rather than employing the delta δ , which represents the 
difference between survival and recovery rates in current work, 
we  could involve using a ratio of these rates. This change would 
be significant because a 10% difference in lower rates has different 
implications compared to a 10% difference in higher rates. Third, due 
to the complicated nature of (pre) clinical experimental designs, 
comparing results across different studies may have confounding 
biases resulting from unobserved variables. In this work, for example, 
we directly modeled the translation between preclinical and clinical 
trials, while in reality, trials usually consist of comparator groups to 

account for experimental biases. As a future improvement, we plan to 
adapt a recent work that used pairwise meta-learning to allow the 
model to learn across different experiments efficiently (Feng et al., 
2024). Fourth, we would like to dive deeper into analyzing the impact 
of dosage regimens on model predictions. During our SHAP analysis, 
we found that high dosage amounts in preclinical trials had a positive 
impact on the model predictions on translation success rate, while 
they had a negative impact in clinical trials. While interesting, SHAP 
might produce misleading explanations for highly correlated features, 
e.g., daily dosage amount vs. dosage times per day (Aas et al., 2021). 
Dosage information is essential in drug development, and we aim to 
conduct a focused, rigorous analysis of dosage regimens for our next 

FIGURE 3

Prediction performance of the ML translation predictor. (a) Sequential feature selection results for different modes of selection criteria using the 
validation set. Best is the smallest feature subset when the F1 score was the best, parsimonious is the smallest feature subset that is within one standard 
error of the cross-validation performance, and elbow is the smallest feature subset based on the Kneedle method. (b) Precision-recall (PR) curves of 
different δ  cutoff thresholds on the test set. F1OOP denotes the optimal operating point chosen based on the best F1 score. The values above the dots 
indicate the F1 scores of OOPs. AUCPR stands for the area under the PR curve. (c) Performance metrics of different datasets created with different δ  
cutoff thresholds on the test set. (d) Receiver operating characteristic (ROC) curves of different δ  cutoff thresholds based on the test set. AUCROC 
stands for the area under the ROC curve.

TABLE 1 The holdout test confusion matrix for the best translation model with | |δ σ<0 .5 .

Model TP FN FP TN Precision Recall F1 Accuracy

Baseline 430 0 668 0 0.39 1 0.56 0.39

Random forest

 - Best (K = 35) 298 132 121 547 0.71 0.69 0.70 0.77

 - Parsimonious (K = 16) 303 127 131 537 0.70 0.70 0.70 0.77

 - Elbow (K = 7) 335 95 173 495 0.66 0.78 0.71 0.76

The baseline model would always predict positive (translation success). For the random forest model, we showed three scenarios with different feature selection criteria. K denotes the number 
of features selected from the total 68 features. While deploying the model in real life, fewer features would reduce data collection costs. For each metric, the best performance was highlighted 
in bold, and the second best was highlighted with an underscore.
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study phase. Fifth, the primary challenge of the data curation process 
is its dependency on expert-guided manual data curation. The current 
random forest model trained on a small dataset outperformed the 
state-of-the-art deep learning models, such as neural networks. The 
advantage of deep neural networks is their capability to generalize the 
representation to transfer to similar domain datasets (LeCun et al., 
2015). Implementing an automated data extraction pipeline, 
leveraging transformer-based large language models (LLMs)(Lee 
et al., 2019; Vaswani et al., 2017; Liu et al., 2023), would significantly 
enhance the efficiency of extracting data from existing literature. This 
enhancement would be beneficial not only for C. difficile infection but 
also for a broader range of bacterial diseases, such as streptococcal 
infections, tuberculosis, and salmonellosis. By creating a dataset 
enriched with multi-omics information for these diverse diseases, 
we  can develop a more generalizable ML-based predictor that 
demonstrates higher performance. We also consider including more 
clinical variables, such as patient demographics and health conditions, 
to further enhance the capability of our predictor. Additionally, this 
enriched dataset would facilitate intra-clinical predictions, such as 
forecasting the outcomes of clinical trial phase 2 based on 
phase 1 data.

Conclusion

This study aims to help translate preclinical findings to clinical 
outcomes for Clostridium difficile infections, leveraging machine 

learning to enhance predictive accuracy and interpretability. Our 
model identifies key factors influencing translational success, 
streamlining drug development for CDI and potentially other diseases. 
This approach not only promises more effective treatments but also 
exemplifies the transformative impact of integrating computational 
methods in modern medicine, paving the way for advancements in 
personalized healthcare. The source code for our A2H 
recommendations system can be  found at https://github.com/
IBPA/A2H.
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FIGURE 4

Comparison of feature importance and SHAP results. The rank of the 16 features, as selected using parsimonious selection criteria of the sequential 
feature selection, using different analysis methods (LDA: rank based on the absolute value of linear discriminant analysis, PCC: rank based on the 
absolute value of Pearson correlation coefficient, RF: rank based on random forest, and SHAP: rank based on the absolute value of SHAP). For the 
beeswarm plot on the right, each dot represents a data point, where red and blue correspond to high and low feature values, respectively. SHAP value 
indicates the amount of increase in translation success probability the feature causes for that data point. For example, a red dot with a positive SHAP 
value means that having a high feature value has a positive impact on predicting translation success for that data point.
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