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Abstract

Background: A tantalizing question in medical informatics is how to construct knowledge from heterogeneous datasets, and
as an extension, inform clinical decisions. The emergence of large-scale data integration in electronic health records (EHR)
presents tremendous opportunities. However, our ability to efficiently extract informed decision support is limited due to the
complexity of the clinical states and decision process, missing data and lack of analytical tools to advice based on statistical
relationships.

Objective: Development and assessment of a data-driven method that infers the probability distribution of the current state of
patients with sepsis, likely trajectories, optimal actions related to antibiotic administration, prediction of mortality and
length-of-stay.

Methods: We present a data-driven, probabilistic framework for clinical decision support in sepsis-related cases. We first define
states, actions, observations and rewards based on clinical practice, expert knowledge and data representations in an EHR dataset
of 1492 patients. We then use Partially Observable Markov Decision Process (POMDP) model to derive the optimal policy based
on individual patient trajectories and we evaluate the performance of the model-derived policies in a separate test set. Policy
decisions were focused on the type of antibiotic combinations to administer. Multi-class and discriminative classifiers were used
to predict mortality and length of stay.

Results: Data-derived antibiotic administration policies led to a favorable patient outcome in 49% of the cases, versus 37%
when the alternative policies were followed (P=1.3e-13). Sensitivity analysis on the model parameters and missing data argue
for a highly robust decision support tool that withstands parameter variation and data uncertainty. When the optimal policy was
followed, 387 patients (25.9%) have 90% of their transitions to better states and 503 patients (33.7%) patients had 90% of their
transitions to worse states (P=4.0e-06), while in the non-policy cases, these numbers are 192 (12.9%) and 764 (51.2%) patients
(P=4.6e-117), respectively. Furthermore, the percentage of transitions within a trajectory that lead to a better or better/same state
are significantly higher by following the policy than for non-policy cases (605 vs 344 patients, P=8.6e-25). Mortality was predicted
with an AUC of 0.7 and 0.82 accuracy in the general case and similar performance was obtained for the inference of the
length-of-stay (AUC of 0.69 to 0.73 with accuracies from 0.69 to 0.82).

Conclusions: A data-driven model was able to suggest favorable actions, predict mortality and length of stay with high accuracy.
This work provides a solid basis for a scalable probabilistic clinical decision support framework for sepsis treatment that can be
expanded to other clinically relevant states and actions, as well as a data-driven model that can be adopted in other clinical areas
with sufficient training data.
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Introduction

Over the past few decades, our society has transitioned to a state
where bottlenecks have shifted from a lack of data, to limitations
in extracting meaningful knowledge and subsequently use that
knowledge to drive decisions. This data-rich, knowledge-poor
oxymoron is particularly true in computationally-driven Clinical
Decision Support Systems (CDSS), where advances in
automated high-throughput data acquisition and electronic health
records have yet to be translated into knowledge extraction and
probabilistic decision guidance. This is true even in the cases
of dangerous and ubiquitous threats to human health, one of
which is sepsis. Sepsis is an overwhelming systemic immune
response to infection, which results in damage to the patients’
own tissues and organs. This process can happen at any age,
regardless of the underlying health condition and from
seemingly benign incidents. Severe sepsis strikes about 18
million people annually (750,000 cases in the United States)
and has a very high short-term mortality risk (28% to 50%) [1]
Severe sepsis is the leading cause of Intensive Care Unit (ICU)
deaths (60-80% of ICU deaths in developing countries) and it
kills more than 6 million children world-wide every year [2].

Surprisingly, while sepsis is one of the most common diseases
(more deaths than prostate cancer, breast cancer, and HIV/AIDS
combined [3]), it has the lowest state-funding rates for research.
This is in contrast to its severity, occurrence in our society
(sepsis hospitalizations have more than doubled over the last
10 years [2]) and money spent to battle it (US $14.6 billion in
2008, an increase by an average of 11.9% each year). The
diagnosis of sepsis is often delayed because it is difficult to
differentiate from other high-risk conditions and this delay can
lead to the rapid deterioration of the patient. One potentially
transformative approach to this problem would be to exploit
the vast amount of information that is hidden in the Electronic
Health Records (EHR) of patients to derive a CDSS.

Adoption of EHR’s by health care systems was predicted to
vastly improve the efficiency and quality of patient care [4].
Unfortunately, despite explosive EHR adoption, and enormous
associated capital expenditures, these gains have yet to be
realized [5,6]. One reason for this failure is that our capacity to
utilize complex, large-scale data to generate knowledge and
inform clinical decisions remains limited. For example, while
CDSS have existed for decades, they are mostly limited to alert
systems and (data-oblivious) agent-based suggestions that rely
on hard-coded criteria. Although in certain systems patient cases
are used for probabilistic training, these efforts focus on feature
correlations and final clinical outcomes [7-10] rather than
actionable policy (see [11,12] for a review). Our previous work
on the associations among EHR observations for lactic acid
prediction work falls also in this category (11).

Some of the most powerful methods for modeling decision
making in clinical decision support are those that treat the

learning problem as a Markov Decision Process (MDPs) [13].
A MDP is a discrete-time stochastic control process, where the
next state depends only on the current state and the action that
the decision maker performs, while it is conditionally
independent of all other states and actions. An extension to
MDPs are the Partially Observable MDPs, (POMDPs), where
the states themselves are hidden and only observations are
available. In that case, a belief regarding the current system
state is formed based on the observations and their state-based
likelihoods [14]. There are many methods to solve
MDPs/POMDPs, including dynamic programming, linear
programming and reinforcement learning [13-17]. When the
problem becomes intractable, reinforcing learning methods are
preferred as they do not require knowledge of the underlying
MDP model.

Surprisingly, although the use of MDP methods in clinical
settings is well established, there are only a few notable
examples where POMDP has been explored for disease-specific
decision support with probabilistic outcomes. MDP has been
used for decision support in determining liver acceptance for
liver transplants [18-20], HIV therapy initiation [21], breast
cancer screening [22], treatment of hepatitis C [23], statin
therapy timing [24], among others [25]. However, in most cases
the pathology is complex, the underlying state of the patient is
latent and we can only observe emitted signals (observations)
with some uncertainty. A notable example of POMDP adoption
in medical decision support is that of Hauskrecht and Fraser
[26,27] who modeled Ischemic Heart Disease with a POMDP
model that included both treatment and test actions. This work
used an impressive hierarchical model for state variables and
performed reasonably well in predicting optimal policies in that
given scenario. Similarly, Turgay et al [28] used a POMDP
model to support personalized mammography screening
decisions in a model that used six states, three of which were
fully observable. Kreke et al created a 2-state POMDP model
for pneumonia-related sepsis patients that included only a
Cytokine test as an investigative action and incorporated the
Sequential Organ Failure Assessment (SOFA) score for the
MDP state space definition [29,30]. In all these cases, both the
state model and policy were course-grained, the parameter space
limited and the training sets were a few dozen patients.

Here, we use a point-based POMDP solver together with a
dataset of 1492 patients that is complete with time-stamped
blood tests, vitals, and other relevant records for sepsis. We
model patient trajectories and treatment by defining data-driven
states, observations, probabilistic beliefs, actions, and rewards.
We then evaluate the potential of this method to inform on
optimal administration of antibiotic combinations, defined as
antibiotic “policy”. In addition, we assess the predictive ability
of applying machine learning methods to predict patient
mortality and length of stay, in order to drive clinical decision
support.
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Methods

Data Collection
An EHR database containing 1492 adult patients (≥18 years of
age; ICU cases) with personal health information removed and
meeting at least two Systemic Inflammatory Response Syndrome
(SIRS) criteria [31] admitted to the University of California
Davis Health System (UCDHS), was used for all the analyses,
Figure 1 (a). Informed consent was obtained for all human
subjects and the analysis was approved by the institutional
review board of the University of California, Davis (IRB #
254575). Of the 1492 patients, 45.0% were female, the mean
length of stay was 17.0 (SD 36.7) days, and 38.0% were
admitted from the emergency department. Table 1 summarizes
the dataset used; Figure 2 provides a histogram of the total/ICU

length of stay). UCDHS is a tertiary care, academic medical
center that did not have an active EHR alert system for the
diagnosis or treatment of sepsis during the study period. All
data were abstracted retrospectively from the EHR via structured
query language interrogation of a de-identified relational
database. Patients were included in the database if they were
hospitalized and discharged between 1 January 2010 and 31
December 2010. The following six variables were used as
observation variables in our model Figure 1 (a): temperature,
respiratory rate (RR), white blood count (WBC), mean arterial
pressure (MAP), systolic blood pressure (SBP), and blood
culture results, with explicit mention of the bacterial species
that were present in the culture. The first five variables are
measurements of a patient’s condition recorded over time;
temperature, RR, WBC, and MAP are part of the SIRS criteria.

Table 1. Database characteristics.

States and state transition distribution in the dataset

Patients (1492 total)Transitions (4200 total)State

915 (61.33%)1300 (30.85%)No SIRS

264 (17.70%)294 (6.98%)SIRS

38 (2.54%)41 (0.97%)Sepsis

17 (1.14%)17 (0.40%)Septic Shock

939 (62.94%)1929 (45.79%)PS (Probable SIRS)

121 (8.11%)157 (3.73%)Bacteremia

179 (11.99%)323 (7.67%)BPS (Bacteremia Probable Sepsis)

135 (9.05%)139 (3.30%)PSS (Probable Septic Shock)

Demographics and Final Diagnosis

ValueCharacteristic

677 (45.37%)Female Gender

815 (54.63%)Male Gender

376 (25.2%)Mortality Rate

Mean: 17

Median: 8

Length of Stay (days)

Mean: 6.5

Median: 1

Intensive Care Unit Stay (days)

188 (12.60%)Sepsis Diagnosis

21 (1.41%)Septic shock Diagnosis

8 (0.53%)Severe Sepsis Diagnosis
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Figure 1. Development and evaluation of a clinical decision support system (CDSS) for Sepsis. (A) Synopsis of the EHR database, distribution of
vitals, states, actions. Likelihood functions were used to calculate state-specific transition and observation probabilities. (B) The state-action diagram
describes underlying patient states, possible transitions and beliefs based on the values of the observed variables. There are two absorbing states, “Death”
and “Dismissal”. The training of the POMDP model that is applied on the state-action space performs value iteration updates on a sample set of beliefs,
effectively using a Monte Carlo approach for sampling together with dynamic programming for the calculation of the value iteration. (C) Belief (ie,
probability distribution of the patient states) is updated based on the action taken and the new observations. At each time step patient vitals are observed
and the action that corresponds to the optimal policy is taken. A new set of observations (vitals, tests) will lead to an updated belief that may lead to a
new action to be undertaken. The update is asynchronous, as it is calculated on-the-fly as new information arrives. (D) Evaluation of the CDSS framework
was performed through 5-fold cross validation and data size sensitivity analysis.
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Figure 2. ROC curves of mortality classification/prediction. Support Vector Machine training results, given the provided vitals and mortality model,
in a 10-fold cross validation scheme. The features used for the classification are temperature, respiratory rate, WBC, MAP and lactate levels and 745
patients for whom all seven variables were available were considered out of the 1492 of the DB. Radial Basis Function (RBF) kernel was used for the
SVM training. The five measurement variables were summarized by their mean and standard deviation (STD) across the trajectory of each patient.
Principal Component Analysis (PCA) was also used to assess whether linear transformation of the feature space and dimensionality reduction can be
achieved in this case. A filter method was applied using the Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curves as a
ranking criterion. The positive/negative classes for mortality prediction are defined as alive/deceased respectively. (A) Classification using the patients
that have all features available. The maximum prediction accuracy when all patients with available all vitals are used, is 0.72 (72%) and the AUC is
0.70. (Inset) Classification using the 170 patients that have a diagnosis related to Sepsis. The maximum prediction accuracy is 0.71 (71%) and the AUC
is 0.61. (B) SVM classification performance when the patient group that have ratio of transitions to better states with policy drugs vs all transitions to
better states > 0.9 (302 patients out of 745) is used. (Inset) SVM classification performance for the patient group that have ratio of transition to better
states with policy drugs vs all transitions to better states less or equal to 0.1 (190 patients out of 745).

Sepsis Model

State Definition
The states that we include in our formulation were selected
based on the existence of well-defined criteria and expert
opinion, Figure 1 (a). Each of these states is defined by a number
of features as illustrated in Table 2. The SIRS criteria that define
the respective state are HR >90 beats per minute, RR >20
breaths per minute (or partial pressure of arterial CO2 < 32mm
Hg), temperature either >38°C or <36°C, and WBC either
>12,000 or <4000 cells/mm3 (or > 10% bands). For a patient
to be diagnosed with sepsis, at least two of the SIRS criteria
need to be present and a suspected infection should be present
(eg, evident through blood test results). Septic shock occurs

when there is sepsis-induced hypotension (where either SBP is
below 90 mm Hg, < 40 mm Hg below baseline, or MAP is
below 70 mm Hg) that persists despite adequate fluid
resuscitation. Additionally, we included states that cannot be
fully determined during the training phase because of missing
database information, such as missing vitals measurements and
time stamps. These states are “Probable Septic Shock” (PSS:
Hypotention, positive blood test and no adequate vitals to
determine SIRS and/or Sepsis), “Probable SIRS” (PS: no
infection and no vitals to determine SIRS), “Bacteremia
Probable SIRS” (BPS: infection but no vitals to determine SIRS
and/or Sepsis). We have not included the “Severe Sepsis” state
in this work, as the current dataset does not offer enough
information required to incorporate the organ failure into the
patient state definition.

JMIR Med Inform 2015 | vol. 3 | iss. 1 | e11 | p. 5http://medinform.jmir.org/2015/1/e11/
(page number not for citation purposes)

Tsoukalas et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. States and their definition based on vitals and blood tests.

FeaturesState

No SIRS

heart rate (HR) >90 beats per minuteSIRS

respiratory rate (RR) >20 breaths per minute

(or partial pressure of arterial CO2 < 32)

temperature either >38°C or <36°C

white blood cell count (WBC) either >12,000 or <4000 cells/mm3 (or > 10% bands)

SIRS and Infection (blood test result)Sepsis

Sepsis and Organ failure (shown in ICL code)Severe Sepsis

Sepsis and Hypotension (systolic blood pressure (SBP) is below 90 mm Hg,

< 40 mm Hg below baseline, or the mean arterial pressure (MAP) is below 70 mm Hg)

Septic Shock

No infection– no vitals to determine SIRSPS

Infection (blood test result) & No SIRSBacteremia

Infection – no vitals to determine SIRS (thus Sepsis)BPS

Hypotension, positive blood test and no vitals to determine SIRS (thus Sepsis)PSS

Actions
A policy is one or more actions that are followed. Each antibiotic
combination is considered a possible action. A total of 48
antibiotics have been included in the patients’ EHR that we
analyzed. Here we consider the top five more frequently used
antibiotics (Vancomycin, Cefepime, Metronidazole, Ceftriaxone,
and Meropenem) and all their possible combinations, plus one
more combination that encapsulates all other antibiotics that
may have been used. This results in 32 possible combinations,
each one defining a different action of the five most frequently
used antibiotics. Vancomycin is a glycopeptide antibiotic that
inhibits the cell wall synthesis of gram-positive bacteria,
although it is avoided due to its nephrotoxicity and ototoxicity.
Both Cefepime and Ceftiaxone are cephalosporin antibiotics
that have activity against both Gram-negative and Gram-positive
bacteria and they are especially used to treat moderate-severe
pneumonia. Cefepime is also used to treat infections caused by

multi-drug resistant microbial strains. Metronidazole is a
nitroimidazole antibiotic that is used particularly for anaerobic
bacteria and some protozoa. Meropenem is an ultra-broad
spectrum antibiotic and beta-lactam that inhibits bacterial wall
synthesis. Combinations of all states with all possible actions
comprise the state-action space for our sepsis model, Figure 1
(b, left side).

Rewards
Reward/cost values have been provided empirically by
physicians, based on the severity of each state. These are, from
best to worse: Healthy (100,000), No SIRS (50,000), Probable
Sepsis (PS, 5000), SIRS (-50), Bacteremia (-10,000), Bacteremia
Possible Sepsis (BPS, -12,500), Possible Septic Shock (PSS,
-15,000), Sepsis (-40,000), Septic Shock (-60,000), Death
(-100,000). This information is also depicted in Figure 3, first
panel.
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Figure 3. A graphical user interface (GUI) for the clinical decision support system. Physicians have access to real-time and historical vital history
(upper left), as well as state history (upper right) for a given patient. The state history displays events, most likely path if optimal policy is to be adopted
and the past trajectories of the top three patients that had similar profiles (ie, past states and vitals) to the current patient. The state diagram (bottom left)
depicts the state transition probabilities and its updates based on the current state. The GUI also displays the belief distribution, optimal action given
the current belief and the second best alternative action. Drug history and significant events are displayed (bottom right). The tool updates values
automatically with new data, although the user has the flexibility to revise the desired reward values (upper left) and then manually trigger a recalculation
of the optimal policy.

Calculation of Transition and Observation
Probabilities
Transition probabilities are calculated as the frequency of
State-Action-Next State patterns in each State-Action
combination. Similarly, observation probabilities are calculated
based on the frequency of observing vital value (in bins)
combinations in any given state. In order to extract the
probability of the observation combinations, we fit the
distribution that best describes the data for each vital and state
and then divide it in five non-overlapping, equally-sized bins.
The number of bin was selected such that sufficient data (>10
samples) will be present in each bin. For each state, the
distributions of the five vitals are divided in five equal parts
across their min-max range (each assigned a probability from
the distribution) with blood test being modeled with a binary
variable (presence/absence of bacteria). This leads to 6250

combinations (2∙55).

POMDP Formulation
A POMDP is defined as a 8-tuple (S, A, Z, T, O, R, b0, γ), where
S is a finite set of states, A is a finite set of actions, T:S × A ×

S → P(S)is the state transition function, T (s, a, s’) denotes the
probability P(s’| s, a) of reaching state s’ from state by taking
action a, R: S × A → ℜ is the reward function, P(s’s, a) denotes
the immediate reward of executing action a in state s, γ ∈ [0,
1] is the discount factor, Z is the finite set of observations, O:S
× A → P(S) is the observation function, O(s, a, z) denotes the
probability P(z|s, a) of perceiving observation z when taking
action a and arriving in state s, b0 is the initial state probability
distribution, b is the state probability distribution and b0(s)
denotes the probability of starting in state s. A policy π for a
POMDP problem is defined as π(b)→a and its value is the
expected cumulative discounted reward that we will receive if
we perform actions a when we have belief b. The policy that
maximizes this cumulative value is called the optimal policy.
We used a POMDP model training methodology that is based
on a Monte Carlo approximation for solving the Value Iteration
method over a sampling belief space, Figure 1 (b, right side).
Value iteration calculates the value of each state by solving the
Bellman equations (Figure 4).

If we have belief b(s) of being in state s, perform action a and
we observe z, the updated belief for being in state b(s’) is shown
in Figure 1 (c) and Figure 5.
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Figure 4. Value iteration calculates the value of each state by solving the Bellman equations.

Figure 5. Belief b(s) of being in state.
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POMDP Statistical Evaluation
We use Perseus [32], a randomized point-based value iteration
algorithm to extract the optimal policy with default settings.
We use 5-fold cross-validation to evaluate the generalization
error of the policy, Figure 1 (d). For a specific transition, a
CDSS-derived policy is deemed as followed if one or more of
the antibiotics in the policy have been administered to the
patient. Comparison is performed between treatments that are
in agreement with the CDSS-derived policy for each transition
and those that are not (non CDSS-derived policies), measuring
the percentage of transitions that lead to a better/same/worse
state in both cases. At a trajectory level, we compare what
percentage of trajectories move to a better state on average with
and without the CDSS-derived policy. The robustness of the
algorithm to perform in the context of reduced data is tested by
splitting the patient data into 3 parts, where only the 2 out of
the 3 parts are used for training. The algorithm is trained on
randomly selected subsets of the 2/3 training data that
correspond to the desired percentage of the total training set.
The performance is always evaluated in the same testing set (ie
1/3 of the total dataset) and the whole process is repeated 10
times to reduce bias, Figure 1 (d). All P values are calculated
using hypergeometric distribution with multiple hypothesis
correction (Benjamini-Hochberg).

Length-of-Stay and Mortality Inference
For the length of stay (LOS) prediction, we first split the patients
in equally-sized bins, based on their LOS distribution, thus
maximizing entropy and to avoid bias on the training data. Then
we used Support Vector Machines (SVM) with different kernel
functions [33,34]. In SVM classification, the training feature
vectors are mapped to a higher dimension space, in which the
SVM determines a linearly separating hyperplane given by a
maximal margin [35]. In order to predict survivability results
given a patient’s vital signs, an SVM classification method was
used, taking into account five features (temperature, respiratory
rate, WBC, MAP, and lactate levels) and the mortality state of
each patient, for both binary and multi-class classification. For
the latter, we consider both combinatorial pairwise and
one-versus-all schemes [36], where we observed no significant
difference in our results. We evaluated the performance of the
classifier by performing cross-validation (CV) and calculating
the Receiver-Operator-characteristic (ROC) curves, confidence
intervals (CI), and the area-under-the-curve (AUC).

Results

Optimal Policy Prediction by Data-driven Machine
Learning Approaches
We performed 5-fold cross validation (CV) to evaluate the
generalization error of our approach, with similar results across
all folds, Figure 6 (a) and Tables 2 and 3. The CDSS-derived
optimal policies in each transition led in significantly more
occurrences to better states than when the treatment that was
followed by the physicians was not in agreement with the

CDSS-derived policy (49% of transitions to better states when
the CDSS-derived policy was followed vs 37% otherwise;
P=1.3e-13). Interestingly, when non-CDSS policies were used,
patients tend to stay in the same condition (35% in non-CDSS
policies vs 25% in CDSS policies, P=5.1e-13) while the
difference between CDSS-derived policies and non-CDSS
policies is not statistically significant for transitions to a worse
condition (28% in non-CDSS policies vs 26% in CDSS policies,
P=4.2e-1). We then analyzed each patient trajectory
independently, to estimate the number of transitions within a
trajectory that lead to better states, with and without following
the policy. Results show that when the optimal policy prediction
(ie, the policy that maximizes the expected cumulated reward,
as defined in the methods section) is followed, there exists a
significant shift to trajectories that have more than 90% of their
transitions leading to a better state, Figure 6 (b). When the policy
was followed, 387 patients (25.9%) have 90% of their transitions
to better states and 503 patients (33.7%) patients had 90% of
their transitions to worse states (P=4.0e-06), while in the
non-policy cases, these numbers are 192 (12.9%) and 764
(51.2%) patients (P=4.6e-117), respectively. Furthermore, the
percentage of transitions within a trajectory that lead to a better
or better/same state are significantly higher by following the
policy than for non-policy cases. Indeed, 605 versus 344 patients
(P=8.6e-25) have 90% of their transitions to a better state with
versus without following a CDSS-derived policy, Figure 1 (a).
This result was observed in all five runs of the 5-fold CV and
on the full dataset, hence it holds for different data distributions.

Next, we evaluated the robustness of the POMDP framework
to decreasing sets of training data. To perform this analysis, we
iteratively reduced the training set and we evaluated in the same
testing data set (see Methods). Results demonstrate the method
is robust to decreasing amount of data in the set, Figure 6 (c)
as well as Figures 3 and 7, mainly due to the significant overlap
of the various antibiotics in each combination proposed by the
optimal policy. To gain more insight on how the policy changes
by decreasing the training set we constructed a comprehensive
map of the optimal policy for each state, Figure 6 (d). The
resulting map provides the CDSS-derived drug combination
that led to more favorable outcomes in each state, Table 3. It is
important to note, that these policies correspond to a definite
knowledge that the patient is that specific state
(belief/probability of 1), which is almost never the case as
his/her prior history (previous states, clinical information, etc)
shapes the belief distribution across all states at any given time.
Additionally, the depicted drug combinations are associated
with a better outcome overall, and not that are necessarily the
optimal combination under any condition when a patient is in
that specific state, since potent drug combinations are used to
more severe cases, which have a higher probability to transition
to a worse state. The optimal decision for any state will
ultimately be a function of all observations (vitals, blood results,
etc). Their associations will depend on the structure of the data
that were used for the CDSS training.
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Table 3. Optimal Policy based on from the POMDP CDSS tool. Note that this result assumes that current state is known and given in the state column
(Belief/Probability of 1).

DrugsState

CEFEPIME,METRONIDAZOLE,CEFTRIAXONESIRS

METRONIDAZOLE,CEFTRIAXONE,MEROPENEMPS

CEFEPIME,CEFTRIAXONEBacteremia

CEFTRIAXONESepsis

VANCOMYCIN,CEFEPIME,CEFTRIAXONEBPS

METRONIDAZOLE,CEFTRIAXONEPSS

CEFTRIAXONESeptic Shock

Figure 6. Performance and Robustness of the POMDP Clinical Decision Support System for Sepsis. (A) 5-fold cross-validation results depict the
performance of each fold with (left, blue) and without (right, brown) using the policy-proposed antibiotic combination. Each cell contains the number
of transitions (4225 total transitions; 843 transitions per test fold) that lead to worse, equal or better states in each case. A state-specific percentage
across all folds allows for comparison between the different policy strategies. (B) Number of patient trajectories vs. the percentage of their transitions
that lead to a better state. (C) Dependency of CDSS performance on data size based on stratified reduction of the dataset. Outcome is shown for
policy-proposed antibiotic combinations (left) and all other combinations (right) for different states (D) Changes in antibiotic combinations proposed
in calculated optimal policy as a function of data-size reduction. Each row is a state and each column represents a drug-training set combination. The
two tables depict which drug combinations were found to lead to better outcomes when in the perspective state, in the general case. States are as defined
in the Methods sections, with three states denoting uncertainty due to missing data (PS: probable sepsis; BPS: bacteremia, probable sepsis; PSS: probable
septic shock).
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Figure 7. Predicting a patient’s Length of Stay (LOS). Histogram of the LOS for the 745 patients in the database that have a complete record (median
length of stay is 10.4 days). ROC curves for binary classifiers when 4, 8 or 12 days was used as the boundary between the two classes.

Mortality Prediction
Clinical outcome was found to be accurately classified by using
Support Vector Machines (see Methods). In order to predict
patient mortality, we used the five features (temperature,
respiratory rate, WBC, MAP, and lactate levels) as well as the
final outcome for each patient. This led to a dataset of 745
patients out of the 1492 total for whom all six variables were
available. The five measurement variables were summarized
by their mean and standard deviation (STD) across the trajectory
of each patient [37]. Principal Component Analysis (PCA) was
also used to assess whether linear transformation of the feature
space and dimensionality reduction can be achieved in this case
[38]. A filter method was applied using the
Area-Under-the-Curve (AUC) of the Receiver Operating
Characteristic (ROC) curves as a ranking criterion [39]. Radial
Basis Function (RBF) kernel was used for the SVM training in
a 10-fold cross validation scheme. The positive/negative classes
for mortality prediction are defined as alive/deceased,
respectively. Mortality classification of 745 patients has an
AUC of 0.70 (SD 0.04; 95% CI) and accuracy of 0.72, Figure
2 (a). When the test set focuses on the 170 patients with sepsis
group, it achieves an AUC of 0.61(SD 0.14) and accuracy of
0.71, Figure 2 (a). For the group of patients with a better-to-all
transition ratio larger than 0.9 (302 patients out of 745) the AUC
is higher at 0.74 (SD 0.07) and the accuracy is 0.81, Figure 2
(b), while AUC drops to 0.58 (SD 0.10) for patients with a ratio
of better-to-all smaller than 0.1. Comparison of these results
argue that the trained classifier performs better and is more
accurate in cases where the proposed policy has been used and

its discrimination power is higher when these policies lead to
a favorable outcome.

Length of Stay Prediction
To predict the length-of-stay (LOS), we trained SVM classifiers
with two extra features that were found to be informative: the
occurrences of a positive blood culture and the number of policy
drug administration during a patient’s stay. We then defined
and classified the patients in two classes, based on the length
of stay. The threshold for that discrimination was driven by the
median length of stay in the hospital (10.4 days) and hence we
selected thresholds of 4, 8 and 12 days. A 10-fold cross
validation scheme was used for the evaluation of the classifier.
The AUC of the classifiers were 0.69 to 0.73 with small
deviations in the CI (0.02-0.05) and accuracies from 0.69 to
0.82, Figure 7. Multi-class classification for multiple
length-of-stay bins (0-3, 3-6, 6-12, 12+ days) had similar results,
although the AUC drops to 0.53 when predicting the two
intermediate (3-6 and 6-12) classes, Figure 6.

Discussion

In this work, we used the EHR of 1492 patients to build a
decision support tool and predictive classifiers for patients with
sepsis. Despite the fact that the dataset was limited in both
number of patients and features available, the CDSS
methodology resulted in data-driven policies that led to
significantly improved patient outcomes. Similarly, we
demonstrated that time-stamped EHR observational data, such
as patient vitals and blood results, can be used to predict
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mortality and length of stay intervals, with increased accuracy
and discriminative performance.

Given the vast combinatorial space of treatments and outcomes,
one of the main challenges in the development of a statistical
decision support tool is the definition of states and actions in a
way that is both clinically relevant and computationally feasible.
To create a framework that balances these trade-offs, we used
expert knowledge and statistical methods to efficiently represent
clinical cases within the POMDP framework, while at the same
time making sure that each state-action combination has
sufficient data for model training and testing. As the size of
clinical databases scales up, an automated state and action
definition technique can be applied, which might lead to
interesting insights on what is medically relevant in each case.
Our robustness analysis argues that a POMDP-based tool is
quite robust even for small sample sizes and it remains to be
seen the generalization boundaries of such approach for larger,
integrative datasets, more sophisticated state-action spaces with
additional features, and complex clinical histories. As with any
data-driven predictive approaches, the generalization error and
applicability of the results is dependent on the extend a model
can capture the real state and action space, as well as the various
biases that arise due to limited sample sizes, data quality and
precision. For instance, differences in patient populations,
microbiological resistance patterns of the wards, anti-infective
pre-treatment of patients, administration of drugs (eg,
vasopressors) or treatments (e,g, ventilator support) that are
currently not captured limit the applicability of this study as
they can substantially change the proposed policies and actions.
To address these issues, the methods that are proposed here can
be applied in larger datasets that can support a more extensive
modeling for states, actions and observables, while correcting
for possible biases across different attributes.

This initial study paves the way for several interesting directions
towards a predictive CDSS for sepsis treatment. In addition to
the SIRS criteria and the indication of an infection, it would be
useful to take into account possible dysfunctional organs, a set
of information that was not present in the database that we used
here. As such, we can define nine states for organ dysfunction:
absent, Respiratory, Coagulation, Liver, CNS, Renal, Metabolic,
Cardiovascular, Multi-organ dysfunction (the latter defined as
two or more organ failures). The Sequential Organ Failure
Assessment (SOFA) criteria and score [40] can be used for this

purpose. The action space can similarly be expanded to include
several other actions that are important for sepsis treatment,
such as the administration and dosage of IV fluids, vasoactive
medications, initiation of mechanical ventilation, oxygen
therapy, hemodialysis, the use of sepsis order set, and other
admission and/or transfer decisions. To this end, a more
extensive dataset, both in terms of features and patients is crucial
so that the state/action combinatorial space will have adequate
training samples. Furthermore, it is important to extend the
number of composite features that one will investigate for
complex traits, as in this study we only considered up to seven
features. Such extension would likely lead to more accurate
predictions regarding mortality and patient’s length-of-stay.
From a technical perspective, it would be important to work
towards an algorithmic framework that can distinguish patients
that have reached a state from different trajectories, as the
optimal treatment in each of these scenarios can be substantially
different. Although this would violate the Markov property in
the general case, one can investigate finite-memory models that
can accommodate such setting.

Finally, an important aspect of any CDSS tool is an intuitive
and interactive visualization of the patient status, past history
and decision space. For this work, we have developed an
interactive graphical user interface (GUI) that is connected with
the POMDP solver and the database and can display the vitals,
drug and state history, state belief, state diagram with all
possible transitions and their probabilities, as well as the
optimal/near-optimal actions given the current belief for the
patient’s state, Figure 3. The user can also define the rewards
for each state and re-calculate the POMDP-derived optimal
policy. In addition, the patient’s trajectory is compared
on-the-fly with other patient’s trajectories in the database for
comparison and visualization of potential outcomes. Novel
visualization methods and interactive tools, such as
head-mounted displays that are non-obtrusive are promising
candidates to pair with the proposed CDSS, both as display and
acquisition devices. The ultimate goal should be to use real time
learning and analysis obtained from readily available EMR data,
to warn the clinician of important changes in patient “states”
and the need for new “actions” to improve the outcome of severe
sepsis patients. As such, the integration of “big data” analytics
with ubiquitous computing has the potential to revolutionize
emergency and intensive care medicine as we know it.
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