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A B S T R A C T

Automated generation of knowledge graphs that accurately capture published information can help with 
knowledge organization and access, which have the potential to accelerate discovery and innovation. Here, we 
present an integrated pipeline to construct a large-scale knowledge graph using large language models in an 
active learning setting. We apply our pipeline to the association of raw food, ingredients, and chemicals, a 
domain that lacks such knowledge resources. By using an iterative active learning approach of 4120 manually 
curated premise-hypothesis pairs as training data for ten consecutive cycles, the entailment model extracted 
230,848 food-chemical composition relationships from 155,260 scientific papers, with 106,082 (46.0 %) of them 
never been reported in any published database. To augment the knowledge incorporated in the knowledge graph, 
we further incorporated information from 5 external databases and ontology sources. We then applied a link 
prediction model to identify putative food-chemical relationships that were not part of the constructed knowl-
edge graph. Validation of the 443 hypotheses generated by the link prediction model resulted in 355 new food- 
chemical relationships, while results show that the model score correlates well (R2 = 0.70) with the probability 
of a novel finding. This work demonstrates how automated learning from literature at scale can accelerate 
discovery and support practical applications through reproducible, evidence-based capture of latent interactions 
of diverse entities, such as food and chemicals.

1. Introduction

Mapping the chemical composition of food and ingredients is 
essential for unlocking their potential and informing decisions. From 
creating healthier and tastier food products[1,2] to enriching food with 
the right compounds[3,4] or building personalized diets[5–7], under-
standing what is in each ingredient and at what concentration is para-
mount. Food composition at the molecular level is usually found in food 
composition tables like the USDA’s FoodData Central (FDC)[8] or the 
ANSES-CIQUAL database[9]. This enables several stakeholder groups, 
from researchers to policymakers, to assess the nutrition quality of 
various foods and their regulatory status and to use them in the 
respective industries[10]. However, despite the established importance 
of the food composition information, most of the food-chemical infor-
mation that is present in the scientific literature is not captured in the 

structured databases[1]. For instance, the total size of food composition 
space is estimated at tens of thousands of chemicals[11], while FDC and 
ANSES-CIQUAL focus on only 500 compounds. To expand the coverage 
of chemicals in foods, several initiatives attempt to capture food 
composition from scientific literature, such as FooDB[12] (797 foods 
and 15,750 detected chemicals) and DietRx[13] (2222 foods and 6992 
chemicals), which further aggregate data from several other databases 
like FDC[8], KNApSAcK[14], Dr. Duke’s Phytochemical and Ethnobo-
tanical Databases[15], Phenol-Explorer[16–18], and PhytoHub[19]. 
However, existing databases require laborious annotation effort from 
experts or lack consistent quality control as the majority of their 
food-chemical composition information is not linked to evidence that 
allows reproducible results. For example, less than 1 % of associations in 
FooDB, one of the most notable DBs in this space, have literature cita-
tions to support them (Supplementary Information Section 1.1.1).
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Although manual extraction by the domain experts is often precise, it 
does not scale well with bibliographic literature sources such as PubMed 
[20], which contains 34 million citations and abstracts, and PubMed 
Central (PMC)[21], which includes 7.6 million full-text scientific liter-
ature articles. From PMC, we estimate we can extract at least 2 million 
unique food-chemical associations from the unstructured text data 
(Supplementary Information Section 1.1.2). The sheer amount of 
available scientific literature necessitates the need for an automated 
framework for constructing knowledge graphs (KGs), which is widely 
used thanks to their scalability and ability to reveal previously hidden 
patterns and relationships in the data, leading to better insights and 
more informed decision-making(X. [22]), especially in the life sciences 
domain(J. [23]; N. [24]). There has been prior work utilizing language 
models to construct domain-specific knowledge graphs from unstruc-
tured texts[25–30], with some combined with active learning (AL) to 
reduce human annotation[31–33]. Although some works have con-
structed food-relevant knowledge graphs, they are limited by the low 
ground truth precision of relation extraction[25] and the small number 
of chemical entities[29].

In this work, we present the Lit2KG framework (Fig. 1a) that extracts 
information from scientific literature using a large language model in an 
AL setting to construct a large-scale KG. The entailment model of the 
Lit2KG framework uses a premise from the scientific literature to extract 
and predict multiple hypotheses with high performance (F1 score of 83 
%), with the predicted probabilities being highly correlated to the 
ground-truth annotations (R2 = 0.94). We also tested four different AL 

strategies and found that selecting samples that maximize the likelihood 
leads to discovering new knowledge 38.2 % faster than the baseline. 
Applying graph-embedding link prediction models for graph completion 
followed by validation through literature search revealed 355 missed 
food-chemical composition associations that were further verified 
manually and 11 additional associations that were novel, 6 of which we 
have found strong evidence to support them. The resulting knowledge 
graph contains 285,077 triplets of three entity types (food, part, chem-
ical) and four relation types (contains, has part, is a, has child) on three 
evidence quality levels (high, medium, low) with 4318 of them evalu-
ated by human experts (Fig. 1b).

2. Material and methods

2.1. Premise-hypothesis pair generation

We collected a total of 1959 raw and non-processed food names that 
have a known National Center for Biotechnology Information (NCBI) 
Taxonomy ID[34] from multiple food databases (see Supplementary 
Fig. 1a). We then used the LitSense API[35], which is a search system for 
biomedical literature at the sentence level provided by the NCBI, to 
query for the search keyword “{food name} contains” (Supplementary 
Data 1; Supplementary Information Section 1.2.1). The LitSense API 
returns sentence-level text snippets from the PubMed abstracts and the 
PMC open-access full-text articles, as well as the named entity recogni-
tion (NER) service for species and chemical entities, along with their 

Fig. 1. Overview of the Lit2KG framework and the FoodAtlas Knowledge Graph. a, Scientific literature is queried using raw food names and retrieved sentences 
(premises) where the species and chemical entities are tagged (e.g., … cocoa[SPECIES] is a good source of (− )-epicatechin[CHEMICAL] …). From these premises, hy-
pothesis triplets are generated such as (cocoa, contains, (− )-epicatechin), which we refer to as premise-hypothesis (PH) pairs. The entailment model is then iteratively 
updated through active learning cycles, where a new batch of PH pairs is annotated in each cycle. Finally, both annotated and predicted positive PH pairs are used to 
populate the knowledge graph. b, Visualization of the FoodAtlas Knowledge Graph (FAKG), which contains 285,077 triplets of 3 entity types and 4 relation types. 
Each triplet in the FAKG is assigned one of three quality types and provides a reference to the publications that support it for reproducibility.
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corresponding NCBI Taxonomy IDs and MeSH IDs, respectively. We 
further processed these text snippets by discarding non-food entities and 
tagging the part entities (e.g., leaf and root) using our manually gener-
ated lookup table consisting of 70 food parts (Supplementary Data 2).

For each LitSense-returned sentence si ∈ S, which we refer to as a 
premise in our work, there exist three sets of named entities Fi, Pi, and Ci 
for food, parts, and chemicals, respectively, where Pi can be an empty set 
as not all sentences have parts in them. We then generated a set of hy-
potheses Hi for each premise si by taking the cartesian product of the 
entity sets Fi, Pi, and Ci as 

Hi ={template(f , p, c)∀(f , p, c) ∈ Fi ×Pi ×Ci}

∪ {template(f , c)∀(f , c) ∈ Fi ×Ci},

where template( ⋅) is the hypothesis template that generates a triplet of 
type ({food} {part}, contains, {chemical}) or ({food}, contains, {chemi-
cal}), respectively. We refer to these pairs of premise and the extracted 
hypotheses as premise-hypotheses (PH) pairs in our work (see Supple-
mentary Fig. 1b).

2.2. Premise-hypothesis pair annotation

We annotated the PH pairs to generate a dataset for training, vali-
dating, and testing the entailment model using the AL strategy 
(described in the following sections). During the annotation process, a 
given PH pair was assigned one of three possible classes entails, does not 
entail, and skip. More specifically, entails was assigned if the premise 
supported the underlying relationship used to construct the hypothesis, 
and does not entail was assigned if there was insufficient evidence in the 
premise to support the hypothesis. Note that the hypothesis from a PH 
pair marked as does not entail is not necessarily a negative, as another 
premise may support the hypothesis. Finally, skip was assigned if the 
premise the LitSense API returned was not formatted correctly or if the 
NER tagging by LitSense API was wrong (Supplementary Information 
Section 1.2.2). To ensure the annotation was of high quality, two ex-
perts annotated each PH pair independently, and only the PH pairs that 
had agreed annotation results by the two experts were kept. We 
randomly split the data into training, validation, and test sets with 
approximate ratios of 70 %, 15 %, and 15 %. To avoid data leakage, we 
ensured that the three datasets did not share the same premises or hy-
potheses during the splitting. In the end, we had a training set with 4120 
PH pairs (1899 entails, 2221 does not entail), a validation set with 825 PH 
pairs (295 entails, 530 does not entail), and a test set with 840 PH pairs 
(312 entails, 528 does not entail) (Supplementary Data 3).

2.3. Entailment model

We trained the entailment model to predict whether the premise 
logically would entail the hypotheses. To this end, we used the BioBERT 
[36] over other language models[37–39] (Supplementary Informa-
tion Section 1.2.3), as it was pre-trained on the same corpus as where 
the premises were extracted from(PubMed abstracts and PMC full-text 
articles) and have demonstrated improved performance on biomedical 
benchmarks[36]. We then fine-tuned the BioBERT entailment model by 
utilizing the binary classification schema, where the input sequence was 
formatted by concatenating the premise and hypothesis with the [SEP] 
token in between, and the model predicted if the given PH pair was 
entails or does not entail. We used the held-out validation set to optimize 
the hyperparameters, where the tunable hyperparameters were learning 
rate = {2 × 10− 5, 5 × 10− 5}, epochs = {3, 4}, and batch size = {16, 32}. 
The hyperparameter set with the best held-out validation precision was 
selected, and the performance of each round was reported using the 
held-out test set. Note that we trained a production entailment model 
using all the labeled data (i.e., training, validation, and test sets) 
(Supplementary Information Section 1.2.3).

2.4. Active learning strategy

In this work, we tested four active learning (AL) strategies, maximum 
likelihood, maximum entropy, stratified, and random. We simulated the AL 
strategy by splitting the training pool with 4120 PH pairs into ten rounds 
r = {1, 2, …, 10}, with 412 new PH pairs selected in each round and 
appended to the existing training data by the respective strategy. In 
other words, at round r, we trained the entailment model mr using 412 x 
(r – 1) training PH pairs plus 412 new PH pairs selected from the 
remaining 412 x (10 – r + 1) PH pairs. We call this training and eval-
uation process a run, and we repeated 100 runs for each AL strategy to 
test the statistical significance. The stratified strategy first ranked the 
remaining PH pairs from high to low probability and split them into ten 
equally sized bins, randomly drawing the same number of samples from 
each bin. The maximum likelihood strategy chose the top 412 positive 
samples based on their probability score. The maximum entropy sampling 
strategy first computed the uncertainty for each PH pair as min(1 – p, p), 
where p is the probability of the given PH pair predicted by the entail 
model. All PH pairs were then ranked using the uncertainty value from 
high to low, and the top 412 uncertain PH pairs were selected. Finally, 
the random sampling strategy chose 412 PH pairs randomly. Note that 
for the first round, all four AL strategies randomly selected the first 
round of PH pairs to train on, and for the last round, all four AL strategies 
were trained on a whole training pool of 4120 PH pairs regardless of the 
sampling strategy taken. More detailed information can be found in 
Supplementary Information Section 1.2.3, and a visual illustration of 
the sampling strategies is in Supplementary Fig. 2.

2.5. Knowledge graph generation

After LitSense and our entailment model performed knowledge 
extraction, we constructed our knowledge graph based on the schema 
shown in Fig. 2a. Our schema defined contains relationship between food 
and chemical entities and included taxonomical relationships derived 
from NCBI Taxonomy and MeSH tree ontologies. The FoodAtlas 
Knowledge Graph FAKG = (E,R) encodes information using a bag of 
triplets (h, r, t), where {h, t} ∈ E is the set of all entities (h for the head 
entity and t for the tail entity) and r ∈ R is the set of all relation. Each 
triplet in the KG can have one or more sources and qualities. In this 
work, we define three qualities high, medium, and low for a triplet. The 
high-quality triplets have been validated by the FoodAtlas team and have 
PMID and/or PMCID. The medium-quality triplets are not validated by 
the FoodAtlas team but have PMID and/or PMCID. Taxonomy and 
ontology also are medium-quality triplets. The low-quality triplets are 
not validated by the FoodAtlas team and do not have PMID or PMCID. 
Please refer to Supplementary Information Section 1.3 for the details 
of the FAKG design including the entity and relation types.

The first source of information was from the PH pair annotation 
process, where two relation types, contains and has part, exist. The 
triplets with the contains relation type were from the positive annotated 
PH pairs, whereas the triplets with the has part relation type were 
automatically extracted from the contains triplets. For example, a triplet 
(coconut, has part, coconut seed) was extracted from the triplet (coconut 
seed, contains, lauric acid). All triplets from this source were high-quality. 
The second source was the entailment model predictions, also with the 
contains and has part relation types. However, these were not annotated 
and thus were assigned a medium-quality. The third source was the 
enrichment through the NCBI Taxonomy and MeSH tree ontology. The 
NCBI Taxonomy, which contains medium-quality triplets with the has 
child relation type, encodes the hierarchical structure of the taxonomic 
lineage (Cocos (genus), has child, Cocos nucifera (species)). The MeSH 
tree, which contains medium-quality triplets with the is a relation type, 
encodes the ontological relationship of the chemical entities. We also 
included the triplets extracted from the external databases (Frida[40], 
FDC, and Phenol-Explorer) with either medium- or low-quality triplets 
with the contains relation type. Finally, we also included the link 
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prediction results (triplets with the contains relation type) as 
low-quality.

2.6. Link prediction

Link prediction is a widely studied field that refers to the task of 
predicting missing relationships or links between entities in a graph, 
(food, contains, chemical) triplet type in our case, and contributes to the 
enhancement and enrichment of knowledge graphs[41]. Using the Py-
thon library PyKEEN[42], we trained a set of benchmark link prediction 
models TransE[43], ER-MLP[44], DistMult[45], TransD[46], ComplEx 
[47], and RotatE(Z. [48]) on different versions of the FAKG (Fig. 5a and 
b), performed hyperparameter optimization on the held-out validation 
set using mean rank (MR), and reported the results on the held-out test 
set (Supplementary Information Section 1.2.4). The link prediction 
models were also calibrated using isotonic regression to provide an 
interpretable probability score. Link prediction models are commonly 

evaluated using rank-based metrics like mean rank (MR), mean recip-
rocal rank (MRR), hits@1, hits@3, and hits@10[49]. However, our end 
goal was to generate hypotheses that were either true or false, and 
therefore, we decided to also evaluate using standard binary classifica-
tion metrics like confusion matrix, precision, and recall. To this end, we 
randomly sampled two negatives for each positive triplet in the vali-
dation and test set by corrupting the head and tail entity once, which 
resulted in a validation set with 1335 triplets (445 positives and 890 
negatives) and a test set with 1341 triplets (447 positives and 894 
negatives). Due to the nature of the graph-embedding models that 
cannot make predictions on test triplets with an entity that is never seen 
during the training, we report our binary classification metrics in a 
stricter unfiltered setting, where the test triplets that would be dropped in 
the filtered setting are kept and assigned a default majority label 0.

Fig. 2. Statistics of the FoodAtlas Knowledge Graph. a, Schema of the FAKG. The relation types contains, hasPart, isA, and hasChild encode the food-chemical 
composition relations, the food-food with part relations, the chemical ontological relations using the MeSH tree, and the taxonomical relations using the NCBI 
Taxonomy, respectively. b, Number of triplets per data source in the FAKG depending on the quality. c, Sankey graph showing the connections between quality, data 
source, and evidence. The thickness of the relations between the nodes represents the number of connections in the log scale. d, e, UpSet plot showing the number of 
unique triplets for all data sources for all relation types and all sources based on quality for only the contains triplets. Each row in the plot corresponds to a source, 
and the bar chart on the left shows the size of each source. Each column corresponds to an intersection, where the filled-in cells denote which source is part of an 
intersection. The bar chart for each column denotes the size of intersections. ‘annot’ stands for annotation, ‘pred’ stands for prediction, and ‘LP’ stands for link 
prediction. f, g, Classification of foods and chemicals in FoodAtlas.
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2.7. Link prediction literature validation

To validate the link prediction-generated food-chemical triplets, we 
searched the following four sources sequentially: PubChem taxonomy 
[50], Bing Chat, Google Scholar, and Google. Specifically, for a given 
food-chemical pair, we first checked if the Taxonomy section of Pub-
Chem entry for the chemical of interest lists the scientific name of the 
food and has a reference. If not, we then asked Bing Chat, a search en-
gine based on a large language model, to find the reference 
(Supplementary Fig. 3). Next, we searched Google Scholar using a set of 
pre-defined search queries (Supplementary Information Section 
1.1.8.2). If the initial Google Scholar search did not return the positive 
relationship within the first three pages (30 papers, 10 papers per page), 
we repeated the process with the synonyms of the entities. Finally, we 
searched the first 30 contents of Google using the same search method as 
Google Scholar. A complete procedure for the link prediction validation 
can be found in Supplementary Information Section 1.1.8.

3. Results

3.1. The FoodAtlas Knowledge Graph contains a wide spectrum of food- 
chemical composition information

We utilized the Lit2KG framework (Fig. 1a) to extract the food- 
chemical composition information from the PubMed abstracts and 
open-access articles using raw food ingredients as queries (see Section 
2.1). From this search, we generated 3,596,755 premise-hypotheses 
(PH) pairs where the hypotheses are (food, contains, chemical) or 
(food part, contains, chemical) triplets. We then used BioBERT[36], a 
biomedical language representation model for triplet binary classifica-
tion that we fine-tuned with 4318 manually curated positive triplets in 
an active learning setting. This resulted in 230,504 additional positive 
triplets, for a total of 234,822 unique positive triplets. In addition, we 
curated and added the food-chemical composition information based on 
quality criteria from three external databases (8375 triplets from Frida 
[40], 1055 triplets from Phenol-Explorer[18], and 529 triplets from FDC 
[8]), taxonomical information of the foods using the NCBI Taxonomy 
(1526 triplets), and ontological information of the chemicals using the 
MeSH tree (43,691 triplets) (Fig. 2d). Applying link prediction on the 
knowledge graph generated an additional 9756 triplets of food and 
chemical pairs, 355 of them manually validated as positives. The final 
FoodAtlas knowledge graph (FAKG, Fig. 1b) contains 536 food entities, 
4608 food parts, 15,462 chemical entities, and 285,077 unique triplets 
about food-chemical composition with four different relation types and 
three different entity types (Fig. 2a–g).

In terms of triplet quality, FAKG has 4318 (1.5 %) high-quality (i.e., 
validated by two experts), 264,455 (92.8 %) medium-quality (i.e., with 
at least one reference, but not manually validated), and 16,304 low- 
quality (5.7 %) triplets (i.e., no references, see Section 2.5 and 
Fig. 2b). From those, 4,318, 226,437, and 9,756, respectively, have been 
uniquely captured by our Lit2KG pipeline and the link prediction anal-
ysis (Supplementary Information Section 1.1.3 and Fig. 2b and c). 
The top five foods whose chemical composition is most well documented 
in the knowledge graph are soybean (Glycine max), maize (Zea mays), 
rice (Oryza sativa), cucumber (Cucumis sativus), followed by tomato 
(Solanum lycopersicum) (Supplementary Fig. 4).

3.2. FoodAtlas discovers complementary information to benchmark 
datasets

To test how good the coverage of the food-chemical composition 
triplets from the Lit2KG pipeline is, we compared them with FoodMine 
[51], a database that contains a manually curated chemical composition 
of two selected foods, cocoa (592 chemicals) and garlic (289 chemicals). 
Although there were initially 1289 cocoa and 1376 garlic chemicals in 
FAKG, we adopted the same method used by FoodMine to make 

chemicals in the two sources comparable and created an additional 
chemical identifier, specifically for matching FoodMine chemicals with 
those in FAKG (Supplementary Information Section 1.1.4). After this 
processing step, the FAKG has 379 cocoa and 406 garlic chemicals, 
whereas FoodMine has 301 and 176, respectively. Out of 575 chemicals 
for cocoa, 274 (47.7 %) chemicals were found in FAKG but not in 
FoodMine, 105 (18.3 %) chemicals were common between the two, and 
196 (34.1 %) chemicals were not found in FoodAtlas (Fig. 3a). For garlic, 
FoodAtlas was able to capture 51.1 % (90 out of 176) of FoodMine 
chemicals, while 316 chemicals were unique to FAKG (Fig. 3b; see 
Supplementary Fig. 5 for a similar comparison with FooDB).

3.3. Maximum likelihood active learning strategy discovers knowledge 38 
% faster than without

We fine-tuned the BioBERT-based entailment models based on four 
different AL strategies over ten rounds (see Section 2.4; Supplementary 
Fig. 6). Although all four AL strategies eventually discovered the same 
set of 1899 positives among the 4120 PH pairs in the training pool at the 
final round (r = 10), the maximum likelihood strategy identified the 
positives in training set by 38.2 % ± 27.3 % faster than the active 
learning baseline of choosing random pairs, followed by the maximum 
entropy (10.7 % ± 6.6 %) and stratified learning (9.3 % ± 5.3 %; Fig. 4a 
and b and Supplementary Information Section 1.1.5). This was 
because only the positive food-chemical relationships (i.e., contains) 
were added to the knowledge graph so that the maximum likelihood 
strategy was able to discover more positives via active sampling (see 
Supplementary Information Section 1.2.3.3). Concomitantly, we 
observed lower performance for the entailment models trained using the 
maximum likelihood strategy than the others on all metrics for rounds 2 
through 4 (adjusted p-value <3.6 × 10− 2). This was due to data 
imbalance, as the maximum likelihood strategy samples PH pairs that 
were highly probable, and thus its entailment models were trained on an 
unbalanced training set where on average, 74.9 % of the training data 
for rounds 2 through 4 was positive compared to 53.6 %, 52.2 %, and 
46.1 % for maximum entropy, stratified, and random, respectively, 
(Supplementary Fig. 7).

For the final entailment models, AUCPR = 0.90 and AUROC = 0.94, 
where the baselines were 0.37 and 0.50, respectively (Fig. 4d and e and 
Supplementary Table 1). The model PH prediction probability was well- 
calibrated and highly correlated with the actual ground truth statistics 
after manual validation (R2 = 0.94, Fig. 4c). For instance, 88.6 % out of 
all triplets with a probability ≥0.9 were positives, whereas only 3.9 % 
with a probability <0.1 were positives (Supplementary Fig. 8).

3.4. Sources of error and impact of large language model general 
knowledge

Not surprisingly, the entailment model predicted best on straight-
forward, simple sentence structure, while its performance deteriorated 
when domain expertise was needed or premises were hypotheses posed 
by the authors as shown in index 5–8 of Table 1 (see Supplementary 
Information Section 1.1.6). Variance across bootstrapped models was 
maximized with uncertainty: predictions with 40 %–60 % probability 
had a standard deviation of 0.31 vs. 0.04 for predictions with less than 
10 % or more than 90 % probability (p-value = 2.2 × 10− 177; see 
Supplementary Data 3). Furthermore, analyzing the entailment model 
prediction results based on which section of the literature the premise 
was taken from (e.g., introduction, methods, etc.) revealed higher pre-
cision in certain sections. Unexpectedly, hypotheses stemming from the 
introduction and methods sections were associated with high precision 
(0.91 and 0.89, respectively) when compared to sections like abstract, 
title, and conclusion (0.77, 0.75, and 0.74, respectively; p-value: 9.7 ×
10− 76) (see Supplementary Information Section 1.1.7 and Supple-
mentary Table 2).
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3.5. Link prediction, GPT model, and the impact of ontologies in 
performance

We trained a set of link prediction models for the contains relation 
between previously unknown food-chemical pairs (Fig. 5a). The best 
performance was from TransD trained on the FAA,R (TransD-FAA,R) with 
an overall best performance (precision: 79.3 %, recall: 75.4 %, and F1: 
77.2 %) (Fig. 5b). However, as these models cannot classify triplets with 
entities not seen during the training phase, we used the next best model, 
RotatE-FAA,E,R,P80 that has this capacity (precision: 76.8 %, recall: 70.6 
%, and F1: 73.5 %;Supplementary Data 4and Fig. 5c). Interestingly, 
the inclusion of ontological information (Enrichment in Fig. 5b), 

increases the F1 score by 22.2 % (63.2 % of FAA vs. 77.2 % of FAA,R; p- 
value = 2.4 × 10− 5). Moreover, RotatE-FAA,E,R,P80 is highly calibrated 
with R2 = 0.99 (Fig. 5d) and has an AUCPR of 0.82 (baseline 0.33) and 
AUROC of 0.88 (baseline 0.5) (Fig. 5e and f). All link prediction models 
performed better than the generalized GPT-3.5 model (text-davinci- 
003), which was not fine-tuned using the KG (precision: 64.8 %, recall: 
31.8 %, and F1: 42.7 %) (Supplementary Information Section 1.2.4).

3.6. Link prediction reveals previously unknown food-chemical 
relationships

The final FAKG contains 536 food entities (excluding food part 

Fig. 3. Results of comparing cocoa and garlic to the benchmark dataset FoodMine. a, b, FoodAtlas subgraph of cocoa and garlic where whole food and food parts and 
their chemical composition are displayed. The label of the top 20 nodes with the largest degree is shown for each subgraph, and the size of the node is proportionate 
to its degree. The Venn diagram shows the overlap of FoodAtlas (entailment model annotation, entailment model prediction, and link prediction), external databases 
(Frida, Phenol-Explorer, and FDC), and FoodMine. Interestingly, none of the 3 external databases reported any chemical composition of cocoa.

Fig. 4. Prediction performance of the entailment model. a, Precision, recall, and F1 score of the entailment models trained using the 4 different AL strategies for 
initial (r = 1) and final (r = 10) rounds (n = 100, 100 different random seeds). On the left, the line plot shows the mean value of each AL strategy, and the error lines 
denote the standard deviation of the 100 random seeds. On the right, the box represents the interquartile range, the middle line represents the median, the whisker 
line extends from minimum to maximum values, and the diamond represents outliers. b, Comparison of the new knowledge discovery rate compared between the 4 
AL strategies. The plot shows how early on in the AL round the 1899 positive triplets within the simulated training pool of 4120 triplets are discovered. The error line 
shows the standard deviation of the 100 random seeds. c, Calibration plot showing a high correlation between the probability assigned by the entailment model and 
the ground-truth annotations on the test set (R2 = 0.94). d, e, The precision-recall and receiver operating characteristic curves of the entailment model predictions 
compared to the ground-truth annotations in the test set at the final round (r = 10) averaged over all 400 runs with a different random seed (100 runs for each of the 4 
AL strategies).
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entities) and 15,462 chemical entities, which translates to 8,287,632 
possible food-chemical pairs. Only 1.72 % (142,253 triplets) of these 
food-chemical pairs are connected via the contains relation, with the 
rest, 98.28 % (8,145,379 triplets), being unknown. We, therefore, used 
RotatE to assign probability scores to these unknown pairs (Fig. 6a), 
among which 9756 pairs (0.1 %) were assigned a positive prediction 
label (see Section 2.6 and Supplementary Data 5). Validating 443 
sampled hypotheses from these pairs through an extensive literature 
search (Fig. 6b and Supplementary Information Section 1.1.8) 
revealed 355 positive contains triplets between 203 foods and 153 
chemicals (Fig. 6c), while 11 triplets remained yet unknown with no 
direct evidence (Supplementary Table 3 and Supplementary Data 5).

A closer look at the 355 triplets demonstrated the importance of link 
prediction for knowledge graph completion. Linolenic acid, which is an 
essential omega-3 fatty acid that must be obtained through the diet and 
helps reduce inflammation[52], lower blood pressure[53], and improve 
cholesterol levels[53], were validated to be found in 14 different foods 
(Fig. 6c). The link prediction also discovered evident relationships such 
as the iodide ion, which is an essential trace element for vertebrates, and 
manganese(2+), which is a cofactor for many enzymes involved in 
metabolism[54], including those that are important for bone develop-
ment[55] and antioxidant defense[56], each with relationship to 10 
different foods (Fig. 6c). When it comes to foods, we identified five 
foods, Lota lota (NCBI:txid69944), Brassica oleracea var. italica (NCBI: 
txid36774), Lupinus albus (NCBI:txid3870), Panax ginseng (NCBI: 
txid4054), Musa x paradisiaca (NCBI:txid89151), that have largest 
number of positively validated positives to 5 chemicals each (Fig. 6c).

3.7. AI-driven discovery of six food-chemical relationships

We performed additional analysis for the 11 potential novel food- 
chemical candidates not reported in the literature (Supplementary 
Table 3) and found strong evidence that supports the relationships for 6 
of them. Fig. 6d shows 3 of these potentially novel food-chemical re-
lationships, whereas the rest can be found in Supplementary Fig. 12 and 
Supplementary Information Section 1.1.8. For (Atlantic cod, beta- 
carotene), metabolic pathway analysis identified homologous enzymes 
directly associated with the synthesis or metabolism of the chemical in 
the food (Supplementary Information Section 1.1.8). Specifically, the 
enzyme beta-carotene-15,15′-dioxygenase, which metabolizes beta- 
carotene in human[57], had 58.5 % sequence similarity with beta, 

beta-carotene 15,15′-dioxygenase-like in the Atlantic cod. Similarly, 
for (dudaim melon, matairesinol), we found an enzyme secoisolaricir-
esinol dehydrogenase for biosynthesis of matairesinol in genetically 
close species Cucumis melo and varietas Cucumis melo var. makuwa[58], 
as we did not have the Cucumis melo var. dudaim genome to run a direct 
search. For the (bearded tooth, lumisterol) pair, we found the existence 
of ergosterol in bearded tooth[59] that converts to lumisterol under UV 
irradiation[60].

4. Discussion

In this work, we created an automated framework to extract infor-
mation from literature and create domain-specific knowledgebase 
graphs. Applying to food and chemical relationships created the first AI- 
driven resource in the field, summarizing findings through 285,077 
triplets, with 106,082 (2091 high-, 94,095 medium-, and 9896 low- 
quality) of those associations (46.0 %) never been reported before in 
published databases (Supplementary Information Section 1.1.9). 
While 98.2 % of triplets from the Lit2KG pipeline were labeled as either 
medium or low quality (Fig. 2b), our results indicate high performance 
for both the entailment model (medium-quality triplets; precision of 
0.82) and the link prediction model (low-quality triplets; precision of 
0.77). Additionally, both models exhibit strong calibration (R2 of 0.94 
and 0.99, respectively); that is, the model’s predicted probabilities 
accurately reflect the likelihood of outcomes, providing reliability, 
interpretability, and better decision support. Surprisingly, in many 
cases, there are no indexed references associated with the reported en-
tries and unique standardized IDs for the foods and compounds, which 
made reproducibility and provenance very difficult (Supplementary 
Information Section 1.3.3 and Supplementary Table 6). FoodAtlas, by 
design, addresses this challenge by associating one or more references to 
each association.

Similarly, we are surprised that most of the associations that we have 
mined from the literature are not part of the existing databases, which 
argues that there is a plethora of information to be identified, validated, 
and integrated into tools like FoodAtlas. This, in turn, will be a boon for 
data-driven tools and pipelines for various applications, compound and 
source identification, product formulations, and other R&D operations 
that currently are serendipitous, error-prone, and time-consuming. 
Concomitantly, the food-chemical composition knowledge coverage of 
what is currently in various databases varies (22 % of Frida, 35 % of 

Table 1 
Comparison of the entailment model predicted premise-hypotheses pairs and the ground-truth annotation. The probability column shows the mean and 
standard deviation of the probability scores assigned to the corresponding PH pair at the final round (r = 10) of active learning by the 400 entailment models (100 
random seeds each for 4 active learning strategies). GT stands for ground truth class assigned by the consensus of two annotators based on the premise. Samples shown 
in this table are from the test set.

Index Premise Hypothesis Section GT Prediction Probability

1 Standardized extracts from the leaves of Ginkgo biloba contains 24 % ginkgo- 
flavone glycosides and 6 % terpenoids (ginkgolides, bilobalide)[84].

(Ginkgo biloba – leaves, 
contains, ginkgolides)

Intro Entails Entails 99.6 % ± 1.0 
%

2 This Vaccinium myrtillus L extract is composed of flavonoids, and 
standardized to contain 36 % anthocyanins, with conformance to the USP 31 
on ‘Powdered Bilberry Extract’[85].

(Bilberry, contains, 
flavonoids)

Methods Entails Entails 51.3 % ±
33.7 %

3 RYNXC consisted of 9 traditional Chinese herbs, including clove, rhubarb, 
frankincense, myrrh, borneol, rhizoma corydalis, cowherb seed, Rosae 
rugosae, Garden balsam stem.(G. [86])

(Clove – seed, contains, 
borneol)

Intro Does not 
entail

Does not 
entail

0.3 % ± 0.4 
%

4 For this purpose, tablets were produced containing 16 mg of ellagic acid with 
100 mg of pulp from the fruit of an evergreen tree called Cherimoya, soursop, 
custard apple, and other common names (Annona muricata)[87].

(Custard apple, contains, 
ellagic acid)

N/A Does not 
entail

Does not 
entail

44.4 % ±
37.0 %

5 Previous investigations postulated that polyunsaturated fatty acids (PUFAs) 
are essential nutrients for the common octopus[88].

(Common octopus, contains, 
polyunsaturated fatty acids)

Intro Does not 
entail

Entails 99.3 % ±
1.0 %

6 Domoic acid excretion in dungeness crabs, razor clams and mussels[89]. (Dungeness crabs, contains, 
Domoic acid)

Title Does not 
entail

Entails 62.7 % ±
34.4 %

7 Antihyperlipidaemic and antihypercholesterolaemic effects of Anethum 
graveolens leaves after the removal of furocoumarins[90].

(Anethum graveolens, 
contains, furocoumarins)

Title Entails Does not 
entail

2.3 % ± 8.0 
%

8 In the study by Keskiner et al. (2017), the patients in the test group received 
capsules containing 6.25 mg EPA and 19.19 mg DHA from Atlantic salmon 
(Vectomega tablet, Laboratoires Le Stum, Plage, France)[91].

(Atlantic salmon, contains, 
DHA)

Results Entails Does not 
entail

44.7 % ±
34.3 %
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Phenol-Explorer, 61 % of FDC, and 49 % of FoodMine). There are two 
main reasons behind it. First, limitations to the NLP LitSense algorithms 
used by FoodAtlas may limit synonyms and exhaustive tagging of the 
various entities, co-occurrence of entities in windows that are further 
away in the text body, and information that is in tables, figures, or 
supplementary files[61]. Second, the lack of references that are indexed 
and unique IDs for either foods or chemicals may introduce false posi-
tives. Further experimental validation of findings, such as the 11 novel 
associations with indirect evidence proposed by our link prediction 
pipeline, will help in accelerating the discovery and achieving 
completeness of the domain knowledge.

Large language models worked well in the entailment model but not 
for link prediction. We tested state-of-the-art language models like KG- 
BERT[62] and KGLM[63] that have better MR metrics compared to the 
graph-embedding models and are generalizable to unseen entities or 
relations[64]. For example, we obtained an MR of 191 on the validation 
set by fine-tuning the KG-BERT architecture with the BioBERT as a 
pre-trained backbone instead of the BERT, which is a significant 
improvement over the RotatE MR of 1139. However, those models were 
not used as other metrics were significantly worse than simpler 

algorithms like RotatE (MRR: 0.12, hits@1: 0.08, hits@3: 0.11, and 
hits@10: 0.18), and training/inference time was much longer, making it 
infeasible to perform proper hyperparameter optimization over our 
large-scale FAKG. In addition, while the GPT-3.5 performance was 
impressive even without refinement on domain-specific data, it was not 
on par with the FoodAtlas pipeline, and the lack of source reference IDs 
defeats the purpose of one of the main pillars behind FoodAtlas: 
providing high-quality, trustworthy information with evidence 
provenance.

We identified a conflicting food-chemical relationship from the link 
prediction generated hypotheses. In some cases, this supports Foo-
dAtlas’s potential to challenge established knowledge and emphasizes 
the necessity of experimental checking of the solid, established data. For 
instance, the established absence of beta-carotene synthesis in Atlantic 
Cod (FDC food 171955) contrasts with a high probability score (0.84 ±
0.09; Supplementary Data 5) of the hypothesis (Atlantic Cod, contains, 
beta-carotene). We sought to reconcile this through literature valida-
tion, noting that while unused genes often degrade over time due to 
natural selection[65], the Atlantic Cod retains the beta,beta-carotene 
15,15′-dioxygenase-like enzyme gene. Nevertheless, our further 

Fig. 5. Link prediction model performance. a, We use the FAKG to train a link prediction model whose objective is to generate hypotheses of type (food, contains, 
chemical) that is previously unknown in the graph. b, Ablation study result showing the performance of 6 different link prediction models trained using 12 different 
versions of the FAKG, where different data sources were added or removed to understand their importance. While the training data is different for each version of the 
dataset, the validation and test set remain the same for fair comparison (positive to negative ratio is 1–2; baseline precision: 0.33, recall: 1.0, F1: 0.46). The best 
model for each dataset is selected based on the F1 score. The box represents the interquartile range, the middle line represents the median, the whisker line extends 
from minimum to maximum values, and the diamond represents outliers. c, Standard rank-based metrics of the best model (RotatE) trained on the best training 
dataset (FAA,E,R,P80). Lower is better for mean rank (MR), while higher is better for mean reciprocal rank (MRR), hits@1, hits@3, and hits@10. d, Calibration plot 
showing a high correlation between the probability assigned by the link prediction model and the ground-truth annotations on the test set (n = 5, 5 different random 
seeds). e, f, Precision-recall and receiver operating characteristic curves of the best link prediction model.
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investigation considered the Atlantic Cod’s diet, particularly during its 
larval stage, which predominantly consists of crustaceans[66] rich in 
beta-carotene[67]. Thus, there exists a plausible dietary source for 
beta-carotene incorporation. Additionally, we discovered literature 
referencing the detection of beta-carotene in commercially processed 
cod liver oil, albeit the exact species of cod (Gadus morhua-Atlantic Cod 
or others like Gadus macrocephalus-Pacific Cod) was not specified[68].

The next version of FoodAtlas will address current limitations in data 
type, structure, and information source. First, we will work towards 
extending information extraction to the chemical concentration value in 
their source food (e.g., cocoa contains 564 mg/serving of epicatechin) 
[69]. Second, not all information sources are equal, and we plan to 
introduce a quality score using the source trustworthiness[70]. Third, it 
was required that the food and chemical entities in the KG have a unique 
NCBI ID and PubChem ID, respectively, to ensure compatibility with 
existing data. Although food ontologies like FoodOn[71] exist, we need 
to create and adopt a unified vocabulary of all foods and food parts that 
can be further extended to include processes for processed foods. Fourth, 
expanding FoodAtlas to capture health conditions through a UMLS 
ontology[72] and dosage effects can link foods, ingredients, and their 
health effects in a way that can be useful for the discovery of new 
food-related bioactive compounds and sources[73], food formulation 
and substitutions[74], personalized diet recommendations(Y. [75]), 

among others. Compound information sources can also be expanded so 
that we include in more detail classes of molecules, such as terpenes, 
polyphenols, and peptides, that are of high interest[76]. Fifth, the 
identification and augmentation of data that the entailment model has 
difficulty handling, such as domain-specific hypotheses and complex 
sentence structures, could lead to improved performance[77,78]. Sixth, 
to allow our KG to continuously expand and improve along with new 
incoming publications, we will incorporate a never-ending learning 
scheme similar to NELL[79] to allow existing knowledge to infer new 
information and extend ontology. Recent work[80] also shows large 
language models, such as GPT-4[81], can be used for ontology expan-
sion. Finally, we will investigate further the use of pre-trained and 
fine-tuned large language models with active learning strategies, 
including those based on the network analysis indicators like centrality 
and modularity[82,83], as the field has in the past few months produced 
striking results when it comes to efficiency, robustness, and scalability. 
We believe that the application of cutting-edge AI tools domains where 
computational science penetration has been traditionally limited, has 
the potential to revolutionize and pave the way for a paradigm-shift in 
those industries, with far reaching implications for our society and 
planet.

Fig. 6. Validation of link prediction generated hypotheses. a, Distribution of the 8,145,379 hypotheses in 10 equally spaced bins. b, Calibration plot of the link 
prediction model based on randomly selected hypotheses (40 per bin) validated through manual literature search. c, Visualization of positively validated link 
prediction hypotheses, where the 1-hop subgraph of the top 3 chemical and 5 food entities are shown. The edge width is proportionate to its probability score, and the 
size of the node is proportionate to its degree. d, Indirect evidence for the 3 food-chemical relationships not found in the manual literature search and suggested by 
the link prediction pipeline, where the food and chemical of interest are marked in bold.
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E. Hénaff, F. Câmara, L. Cozzuto, E. Lowy, T. Alioto, S. Capella-Gutiérrez, 
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