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Abstract 20 

Science-informed decisions are best guided by the objective synthesis of  the totality of  evidence 21 
around a particular question and assessing its trustworthiness through systematic processes. 22 
However, there are major barriers and challenges that limit science-informed food and nutrition 23 
policy, practice, and guidance. First, insuf f icient evidence, primarily due to acquisition cost of  24 
generating high-quality data, and the complexity of  the diet-disease relationship. Furthermore, the 25 
sheer number of  systematic reviews needed across the entire agriculture and food value chain, 26 
and the cost and time required to conduct them, can delay the translation of  science to policy. 27 
Artif icial intelligence (AI) of fers the opportunity: 1) to better understand the complex etiology of  28 
diet-related chronic diseases; 2) to bring more precision to our understanding of  the variation 29 
among individuals in the diet-chronic disease relationship; 3) to provide new types of  computed 30 
data related to the ef f icacy and ef fectiveness of  nutrition/food interventions in health promotion; 31 
and 4) to automate the generation of  systematic reviews that support timely decisions. These 32 
advances include the acquisition and synthesis of  heterogeneous and multimodal datasets. This 33 
perspective summarizes f indings f rom a meeting of  experts convened at the National Academy of  34 
Sciences, Engineering and Medicine. The purpose of  the meeting was to examine the current 35 
state and future potential of  AI in generating new types of  computed data as well as automating 36 
the generation of  systematic reviews to support evidence-based food and nutrition policy, practice 37 
and guidance.   38 ACCEPTED M
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Main Text 1 

Introduction 2 

Science-informed decisions are guided by the objective synthesis of  the totality of  evidence 3 
around a particular question, and assessing its trustworthiness through the process of  conducting 4 
a systematic review. This approach has become fundamental to evidence-based food and 5 
nutrition policy, practice, and guidance (1-3). Evidence synthesis and evaluation considers the 6 
strength of  all forms of  scientif ic data and is used across medicine, public health, and the social 7 
sciences.  8 

Systematic reviews (SR) guide the process for setting essential nutrient intake recommendations 9 
for individuals and populations, such as the Dietary Reference Intakes (4), and for food-based 10 
intake recommendations including the Dietary Guidelines for Americans (3). Guidance on nutrient 11 
and other food substances is based on derived normative values and include the Recommended 12 
Dietary Allowance, the Estimated Average Requirement, and the Tolerable Upper Intake Level. 13 
The DRIs inform food and nutrition policies including the Dietary Guidelines for Americans (5), 14 
food fortif ication policies (6), food assistance programs (7), food safety, labelling and other 15 
regulatory decisions (8), nutrition education programs (9), and can inf luence food production 16 
systems (8). The food and agriculture economy contributes 1.53 trillion dollars to the United 17 
States gross domestic product (~5.6 % of  overall (10)), while food-related health ef fects due to 18 
cardiometabolic diseases including hypertension, stroke, type 2 diabetes, and heart disease, 19 
account for 50 billion USD/year in health care costs (11). highlighting the importance of  bringing 20 
the very best and current science available to policy and other decision makers. However, there 21 
are major barriers and bottlenecks that limit the opportunity to achieve science-informed food and 22 
nutrition policy. These include a dearth of  high-quality scientif ic data to inform policy decisions, 23 
the costs of  generating high-quality food and nutrition experimental data, and the vast and rapidly 24 
growing literature base; the sheer number of  systematic reviews required to address all policy -25 
related questions across the entire agriculture and food value chain; the cost and time required to 26 
conduct systematic reviews; among others. These challenges have been reviewed elsewhere 27 
(12, 13). 28 

The landscape is further complicated by the increasing interest in setting food and nutrition 29 
guidance and policies to lower rates of  diet-related chronic diseases, which are a major driver of  30 
health care costs in the United States (11). Historically, the Dietary Reference Intakes and the 31 
Dietary Guidelines for Americans were established to inform food and nutrient intakes in 32 
“apparently healthy” individuals to maintain nutritional adequacy and avoid diseases of  nutrient 33 
def iciencies. Compared to diet-related chronic diseases, nutritional def iciency in otherwise 34 
healthy individuals generally have a single cause, which is a lack of  dietary intake of  a particular 35 
essential nutrient. Furthermore, virtually all healthy individuals respond similarly to dietary 36 
def iciency of  a particular nutrient in terms of  the dose-response relationship and resulting clinical 37 
manifestations. This is not the case when diet-related chronic disease is the outcome used for 38 
setting food and nutrition guidance, programs, and policies. The etiologies of  chronic diseases 39 
are highly complex, resulting f rom the interactions among many essential nutrients and 40 
nonessential dietary components. In addition, chronic disease etiologies are modif ied by 41 
dif ferences in individual biology as well as multiple lifestyle factors and exposures including 42 
physical activity, sleep, stress, diet, eating behaviours, immune responses, and toxins, among 43 
other factors. The contextual factors that modify connections between food and health are even 44 
more complex in low- and middle-income country settings. Hence, it is not surprising there is 45 
signif icant population heterogeneity in the diet-chronic disease relationship compared to that 46 
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between diet and nutrient def iciencies, indicating the need for new approaches to stratify 1 
populations to improve the precision of  recommendations based on various contexts (14). 2 

Population-based diet, food and nutrition recommendations have focused on avoiding essential 3 
nutrient def iciencies with consideration for “apparently healthy individuals”, because the disease 4 
process can alter nutritional requirements (15). However, when considering chronic disease 5 
reduction as an endpoint for nutrient intake recommendations, individuals at risk for or who have 6 
chronic disease cannot be excluded because diet-related chronic diseases can initiate as early as 7 
during embryonic development and manifest over a lifetime. More than 60% of  US adults are 8 
af fected by a chronic disease, and food- and nutrient-based guidance based on avoidance of  9 
nutritional def iciency may not apply to them (16). Globally, essential nutrient def iciencies occur in 10 
the obese state. Hence, inclusion of  chronic disease outcomes for food and nutrition guidance 11 
greatly expands the population under consideration and adds additional heterogeneity in 12 
response to dietary and nutrient intake.  13 

Consideration of  chronic disease endpoints also expands the number of  food components under 14 
consideration f rom essential nutrients to any food component that, while not essential, confers a 15 
health benef it (17), further increasing the complexity of  food and nutrition guideline development. 16 
As such, inclusion of  chronic disease endpoints in food and nutrition guidance requires expansion 17 
of  the populations under consideration. Considering these issues, the National Academies of  18 
Sciences, Engineering and Medicine recently expanded the def inition of  the target population for 19 
Dietary Reference Intake values to include those with or at risk for chronic disease, with each 20 
expert committee being responsible for establishing exceptions that apply specif ically to the 21 
nutrient(s) under review (18). This expansion of  the population under consideration adds to the 22 
complexity of  data required for establishing recommendations.  23 

Technology Terms and Applications to Nutrition Evidence Synthesis  24 

Broadly def ined, AI refers to technologies capable of  mimicking human intelligence, including 25 
having the capacity to solve complex problems and inclusive of  various terms and types of  26 
strategies as it pertains to evidence synthesis (19). Over the past decade, AI emerged as an 27 
important technology which may provide decision support, early on with specialized deep learning 28 
architectures, and more recently with general, pre-trained large language models (LLMs) (20, 21). 29 

Modern LLMs have emerged because of : (1) parameter estimation algorithms that make it 30 
possible to train models with billions or trillions of  parameters; (2) computing inf rastructure such 31 
as graphics processing units (GPUs) that make it possible to f it models in days or weeks rather 32 
than decades but may be cost prohibitive to most researchers; and (3) internet -scale training data 33 
corpuses, enabling an arsenal of  applications, some of  which are deeply embedded in our 34 
everyday lives (22, 23). In food and nutrition, AI is now being utilized to guide more precise and 35 
accurate food and nutrition guidance to improve health (24). Data science methods of fer the 36 
opportunity: 1) to automate and thereby accelerate the process of  synthesizing data and 37 
generating systematic reviews, saving cost and providing decision makers with up -to-date and 38 
comprehensive scientif ic information to make timely decisions; 2) to provide new types of  39 
computed data with respect to the complex etiology of  the diet -disease relationship, and 3) to 40 
identify and classify variation in individual responses to diet. As such, AI of fers a timely and cost -41 
ef fective avenue to develop the strong evidence base necessary to establish ef fective 42 
nutrition/food interventions that prevent and/or manage chronic disease, including data such as 43 
electronic medical records (EMRs), as well as take advantage of  new types of  personalized data 44 
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f rom wearables. However, the quality and sparsity of  data currently available for such AI-based 1 
analyses limit its utility.  2 

Purpose of the Summary 3 

This perspective summarizes f indings f rom a meeting of  experts convened at the National 4 
Academy of  Sciences, Engineering and Medicine (Tables S1, S2). The purpose of  the meeting 5 
was to examine the current state and future potential of  AI in generating new types of  computed 6 
data as well as automating the generation of  systematic reviews to support evidence-based food 7 
and nutrition policy, practice and guidance. Participants included expert computational, data and 8 
nutrition scientists, as well as scientists f rom federal research and regulatory agencies. The 9 
conference agenda was organized into two main areas (i.e. “parts”) as outlined below.  10 

Part I: Emerging Sources of Scientific Evidence 11 

Establishing scientif ic recommendations for chronic disease risk reduction through food and 12 
nutrition presents an enormous data challenge. This is due to the complexity of  food and food 13 
components that individuals are exposed to, the variation in individual response to food and 14 
nutrient exposures, the number of  chronic diseases that are af fected by food, the latency and 15 
cumulative ef fects of  nutrition on the progression of  diet -related diseases that manifest over a 16 
lifetime, among many other factors that have been described elsewhere (17). This complexity and 17 
the associated costs limit the generation of  high-quality scientif ic evidence through randomized 18 
controlled trials that are most of ten short in duration due to the funding structure of  research. The 19 
availability of  large EMR databases and related real-world health and exposure data, coupled 20 
with advances in AI models that mine and automate the synthesis of  these resources, provides 21 
additional inputs into causal inference models that may provide a less expensive approach to 22 
understand the diet-disease relationship and its inherent individual variation. However, EMRs 23 
currently have limited data on dietary intakes, nutritional biomarkers and other relevant variables 24 
at present. With all AI models, a key consideration is the nature of  the training or input data. 25 
Cross sectional data, for example, is limited for making causal claims whereas longitudinal data is 26 
logistically challenging to collect, suf fers f rom confounding, but represents the longer latency of  27 
nutritional exposures and chronic disease risk. Ultimately, the quality of  any synthesis of  any data 28 
relies on the scientif ic rigor and data available for (i.e. garbage in, garbage out”). Training AI 29 
models to advance evidence synthesis can be coordinated and managed by ef forts to collect the 30 
optimal combinations of  data needed to leverage the potential of  and amount of  data needed to 31 
seed AI models. 32 

Lessons learned from cancer drug response prediction models. Deep neural networks are 33 
actively being deployed in sophisticated models for predicting therapeutic responses in cancer 34 
(25). However, two major challenges continue to prevent their integration into broader clinical 35 
practice (26). The f irst is lack of  model interpretability. The ability to scrutinize the inner workings 36 
of  a model is critical to building trustworthy AI tools, especially in high-stakes applications such as 37 
precision medicine. Visible neural networks (VNN) enable direct model interpretation by mapping 38 
the neural network architecture to hierarchical knowledge graphs of  biological components and 39 
functions (Figure 1) (27, 28). A recently published VNN predicted palbociclib ef f icacy in breast 40 
cancer treatment; it captured 8 molecular assemblies integrating rare and common mutations in 41 
90 genes (29). Another recent publication highlighted 41 assemblies involved in modulating 42 
response to common chemotherapies (30). These works serve as illustrative proofs-of-concept to 43 
develop robust composite biomarkers. 44 
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A second challenge is related to generalizability. Drug response prediction models are of ten 1 
trained on preclinical datasets. Transferring information f rom large preclinical datasets to 2 
accurately predict treatment response to smaller patient datasets is particularly challenging, and 3 
may require careful causal modelling. For predictive tasks, massive pre-trained networks can 4 
adapt to new tasks when provided only a handful of  examples; this is called “few-shot learning” 5 
and was used to perform Translation of  Cellular Response Prediction (31). This approach 6 
realized better predictive performance across multiple data types, including tumor cell lines, 7 
patient-derived tumour cell cultures, and patient-derived tumor xenograf ts. An independent 8 
reusability study was able to apply this approach to two patient cohorts and demonstrated its 9 
superior performance (32).  10 

VNN models are not yet common in elucidating the role of  dietary exposures and their availability 11 
on cellular networks and biomarkers of  disease etiology. If  well executed and validated, these 12 
tools can inform biomarker discovery f rom basic research for clinical utility. This requires the 13 
transfer of  information across a series of  contexts (e.g. f rom cell lines to patients, f rom one patient 14 
cohort to another, f rom large populations to small ones or even individuals) with limited data. 15 
Similarly, few-shot learning may be applied to transfer biomarkers across contexts.  16 

Knowledge graphs to reveal the etiology of chronic diseases.  17 

Mining multidimensional patient data that includes endome-type data (e.g., clinical exams, 18 
laboratory data, imaging, genetics, etc.) and ectome-type data (e.g., age, demographics, 19 
exposures, food, social determinants of  health) may allow comprehensive consideration of  the 20 
risk factors underpinning the etiologies of  chronic disease. Extracting trustworthy information f rom 21 
large data sets that is both statistically and biologically meaningful, and that can infer causal 22 
factors and their relationships, is yet unrealized (33) but is essential for developing ef fective 23 
interventions that are tailored to the context of  an individual’s circumstances. Knowledge graphs 24 
are a tool to convert large volumes of  new data to information and ultimately actionable 25 
knowledge but must come f rom well-established information and include layers of  hierarchical 26 
organization, their interactions, and relationships across the continuum, including consideration of  27 
biological and social complexity. Such bottom-up approaches interconnect layered networks 28 
within and across known biological, social, and other domains. The domains can include genes to 29 
proteins to pathways (metabolic, signalling, etc.), to cells, organs, the microbiome and the 30 
individual within the social context, including the complexity of  spaces and locations related to 31 
disease incidence, exposures, and temporal changes that individuals experience.   32 

One example knowledge graph is the Scalable Precision Medicine Open Knowledge Engine 33 
(SPOKE) (34). It has over 40 million concepts that are connected by over 120 established 34 
biologically meaningful relationships gathered f rom existing knowledge in the scientif ic literature. 35 
SPOKE was built by integrating information f rom more than 50 public databases and contains 36 
experimentally determined information on various biological pathways and their architecture, with 37 
every node within a network receiving a weighted score relative to its overall importance 38 
explaining to risk or function. SPOKE has recently incorporated more than 1000 food items and 39 
their relationships to biochemical compounds as determined by mass spectrometry (34) (Figure 40 
2). When SPOKE analysed data f rom six million EMRs, it led to the identif ication of  the nodes of  41 
most importance to Parkinson’s disease. SPOKE retrospectively predicted individuals who would 42 
develop the disease three years prior to a diagnosis with 83% accuracy and performed similarly 43 
to that of  clinical expert predictions (35). While not currently clinical grade/caliber, further 44 
development and ref inement of  SPOKE is expected to support its deployment in medical practice. 45 
SPOKE includes more than 10,000 disease states and can be used towards discovery and 46 
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applications related to food, health, and disease. In nutrition research, SPOKE can be used to 1 
generate hypotheses by predicting the immediate biological and long -term health ef fects of  2 
consuming individual nutrients and other bioactive food components through a dietary 3 
supplement, the optimal combinations of  nutrient intakes, and/or ef fects of  consuming specif ic 4 
foods or dietary patterns.   5 

Predictive modelling and individual responses.  The concept of  precision nutrition is founded on 6 
the premise that identif iable subgroups of  individuals respond dif ferently to nutrients, foods, and 7 
dietary patterns when chronic disease endpoints are considered (14, 36). The need for precision 8 
nutrition is supported by our understanding of  human evolution. Human responses to food and 9 
nutrition have been under a strong selective pressure in the face of  increasing genetic diversity 10 
through adaptation to local food environments, which dif fered considerably across the globe. 11 
Adaptation to local food environments enabled population expansion, as classically seen with 12 
genetic variation that enabled lactase persistence (37). However, the degree of  meaningful 13 
biological variation among individuals that necessitates more precision in food and nutrition 14 
interventions and recommendations for chronic disease risk reduction remains unresolved. To 15 
fully establish the need for greater precision in food and nutrition guidance, two critical questions 16 
need to be addressed. First, are the dif ferences among individuals clinically meaningful? Second, 17 
do we have predictive biomarkers for the diet-health response? 18 

Prediction models are widely used to mine massive data sets to explore the complexity 19 
underlying the interactions among endogenous biological factors and environmental exposures 20 
that def ine or relate to human health. Importantly, they of fer the possibility of  identifying causal 21 
dietary and other factors and predicting their intervention response (38). Establishing 22 
reliable predictive models of  intervention responses has proved challenging due to limitations 23 
including bias resulting f rom several sources, such as algorithmic bias (39), data collected for one 24 
purpose being used for other purposes, lack of  participant diversity, lack of  domain expertise in 25 
data selection, among others (40). This, and a dearth of  success stories, has led to scepticism for 26 
identifying biomarkers that are predictive of  medical and nutritional intervention responses. For 27 
example, AI prediction models of  antipsychotic medications trained on RCT data failed to predict 28 
patient outcomes when applied to out-of -sample patients, indicating treatment outcomes are not 29 
generalizable for schizophrenia, emphasizing the strong modifying ef fects of  an individual’s 30 
contexts (41). 31 

Traditional clinical trials focusing on nutrition and pharmaceuticals are typically designed to 32 
determine the average ef fect of  an intervention, which becomes the evidence-base for 33 
establishing generalized population-based applications. These trial designs give less attention to 34 
the variation in response among individuals and in fact may mask positive or negative outcomes 35 
among subgroups of  participants. In contrast, N-of -1 trials seek to identify and characterize 36 
variation in responses to multiple interventions provided to the same individual, of ten separated 37 
by wash-out periods, and thereby optimize interventions for that individual (42). N-of -1 trials 38 
thereby determine which interventions are better suited for individuals with certain characteristics 39 
(43). Such studies that seek to identify and quantify variation around an average response, or a 40 
more discreet ef fect revealing overt responders and non-responders, can be cost-ef f icient, since 41 
the statistical power is optimized when the number of  observations is maximized on fewer 42 
individuals, compared to fewer observations on more individuals. N-of -1 trials have been used in 43 
the f ields of  psychology and education research, but to a lesser extent in nutrition research.   44 

Predictive model reliability can be improved by combining sparse real-world data in large samples 45 
with more rigorously collected and outcome-focused data, including data collected during clinical 46 
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trials. This approach can be more ef f icient than using sparse data on large number of  individuals 1 
or very costly yet plentiful experimental data on fewer individuals. For example, models built on 2 
massive, randomly sampled, sparse, real-world data, such as the UK Biobank and the NIH-3 
funded All Of  Us Study, can be strengthened by calibrating with more sophisticated dense, yet 4 
costly, empirical data (44), such as derived f rom aggregated N-of -1 studies. In this light, 5 
aggregated N-of-1 trials might be ef f icient and appropriate vehicles for vetting or testing the 6 
predictions of  population-based AI/LLM analyses. Thus, if  a new AI/LLM based model is designed 7 
to determine which individuals are likely to benef it f rom a nutritional intervention, then more 8 
detailed studies of  well-chosen data subsets f rom individuals for whom predictions were made 9 
should shed light on their veracity and expose limitations. This approach is essential to advance 10 
the concept of  precision nutrition. 11 

Other strategies have been employed to strengthen real-world data to understand variation in 12 
response (45). AI techniques used to identify factors that are associated with an intervention 13 
response are limited by the data sets that they are trained on and cannot be used to infer 14 
causation. Training models on more detailed experimental trial data, with limited training on 15 
readily available contextual real-world data (e.g. EMRs; large epidemiological datasets), 16 
enhances their ability to identify predictive factors and account for variation in individual 17 
responses. Such approaches, carefully deployed, have the potential to be more cost -ef fective and 18 
potentially more reliable than conducting large randomized controlled trials.  19 

Use of  digital twins can also improve predictive models by accounting for the factors that lead to 20 
variation in responses. This is achieved by limiting training sets to specif ied subsets of  individuals 21 
within a data set who share similar characteristics. Digital twins may better anticipate the 22 
health trajectory of  a target individual (i.e., ‘digital twins’ of  the target individual) as opposed to 23 
using all individuals in the large data set when making predictions about  the target individual’s 24 
health trajectory. Digital twins may share similar genetic, demographic, microbiome, and other 25 
characteristics (46-48). 26 

Addressing the complexity of food systems, diets, and their relationship to health. Food systems, 27 
diets, nutrition, and human health exist along a continuum. Dietary patterns dif fer by context 28 
across geography, culture, and socioeconomic status, among other factors (49). Food 29 
consumption also has temporal, hedonic, religious, and social dimensions, all of  which may relate 30 
to health outcomes (14). This has motivated interest in applying AI tools to establish connections 31 
across the food value chain and thereby identify opportunities to improve the health-promoting 32 
properties of  the food system. Traditionally, meta-analyses have been instrumental in 33 
understanding the impact of  dietary practices and help inform medical decisions. Data science 34 
technologies permit a comprehensive approach to addressing food systems and health within 35 
these contexts.  36 

One example of  a dietary pattern that is used clinically is FODMAP. A recent AI model used data 37 
f rom various studies to correlate the success of  low FODMAP diets (Fermentable 38 
Oligosaccharides, Disaccharides, Monosaccharides, And Polyols) for the treatment of  patients 39 
with irritable bowel syndrome (IBS), where only 50-70% of  the patients respond well to this 40 
standard of  care treatment. The AI model combined metagenomics and machine learning 41 
analysis and provided hypotheses about the mechanism explaining patient segmentation, 42 
predicted patient response, and informed treatment decision based on 3 biomarkers (50). 43 
Expanding this approach for management of  other chronic diseases through diet is an active area 44 
of  investigation. 45 
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Knowledge graphs are also playing a key role in assembling and structuring data related to food 1 
composition. Agricultural food products contain tens of  thousands of  chemicals. The FoodData 2 
Central database f rom USDA curates compositional information f rom 236 foods and 400 3 
chemicals that have been validated (51). Recently, there have been advances in streamlining the 4 
generation of  Knowledge Graphs with using deep Natural Language Processing (NLP) 5 
techniques and LLMs to support decision support and accelerated discovery (52). Food Atlas (53) 6 
is an AI-generated knowledge graph that has extracted more than 230K food -chemical 7 
composition relationships f rom more than 155K scientif ic papers, and ranked the conf idence level 8 
of  each relationship based on the existing published evidence (54). This analysis estimated that 9 
approximately half  of  the identif ied relationships were not previously discovered. While false 10 
discovery rate is always a caveat to consider, this lends credence to the potential for utilizing 11 
such techniques for discovery. By applying knowledge graph completion methods, new 12 
hypotheses can be formed and experimentally validated, providing a f ramework for automated 13 
hypothesis generation. The next version of  Food Atlas that is under release, uses a combination 14 
of  LLMs and hybrid Knowledge Graph Language Models to integrate food, ingredients, 15 
chemicals, f lavors and health ef fects.  16 

Part II: Accelerating the Process of Evidence Synthesis 17 

The body of  unstructured biomedical data is vast and growing rapidly, hindering physicians’ and 18 
policymakers’ ability to make the most informed decisions grounded in the totality of  the evidence 19 
base. SR and evidence synthesis are key to developing evidence informed decisions whether 20 
they are f rom a medical, research, or policy lens. However, the process of  conducting and 21 
publishing systematic reviews is time consuming and expensive, and many of  the tasks are highly 22 
repetitive but cannot be automated trivially. Consequently, only half  of  high-quality reviews in 23 
biomedical and allied health f ields are completed within two years of  protocol publication (55). 24 
SRs can be expensive to produce and can quickly become outdated, sometimes even before 25 
they are published (56), lending credence for the need for newer methods that function in real-26 
time. Study screening, data extraction and synthesis are key bottlenecks in generating systematic 27 
reviews. There is a need to design, implement, and deploy NLP tasks, corpora, and models to 28 
help domain experts navigate and make sense of  the vast array of  biomedical evidence, ranging 29 
f rom notes in EMRs to published reports of  clinical trials, which are generally stored as 30 
unstructured text and therefore not readily accessible or mineable.  31 

High quality evidence synthesis adheres to the principles of  transparency, reproducibility, and 32 
methodological rigor, following prespecif ied processes (57, 58). Otherwise, SR 33 
f indings/conclusions can be highly dependent or inf luenced by subjective judgements (59, 60). It 34 
is these and related challenges that motivated the development of  AI tools for SR, but the uptake 35 
has been slow (61). By necessity and logic, the process must include human judgement or 36 
oversight in the identif ication of  the relevant literature base f rom raw search results (based on 37 
pre-specif ied search criteria that is then screened) as well as in the rating the risk of  bias of  38 
individual studies and grading the overall certainty of  the available evidence (3). Literature 39 
screening, usually conducted manually by human non-content experts (e.g. trainees, students, 40 
contractors), is the most time and resource intensive stage of  the process and can be subject to 41 
various types of  bias. To mitigate bias and the temporal currency of  the SR process, human-AI 42 
hybrid approaches have been developed, and evaluated for their ef fectiveness, in accelerating 43 
the generation of  high-quality evidence synthesis products that promote timely evidence-based 44 
scientif ic guidance for decision makers. 45 
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Goals of  including AI applications in the evidence synthesis process include accelerating 1 
innovation and time-to-completion, improving productivity, and cost reduction (62). Title and 2 
abstract screening for inclusion in a SR generally reduces the number of  studies identif ied 3 
through a literature search by 95%, and hence is a task that is well suited for automated text 4 
classif ication. Early NLP models were f requency-based models, classifying studies by the 5 
f requency of  individual terms within a document/text. More recent approaches use neural 6 
network-based methods, up to and including LLMs. Currently, there are several AI-powered 7 
screening tools (both commercial and open-source) available to accelerate title and abstract 8 
screening but rely on f requency-based models (e.g., EPPI-Reviewer, abstrackr, DistillerSR, 9 
RobotReviewer and Rayyan) that represent the industry standard (63-66). As an example, the 10 
USDA Nutrition Evidence Systematic Review group, which conducts systematic reviews in 11 
support of  establishing the Dietary Guidelines for Americans, uses AI-powered screening tools 12 
(3).  13 

An early and relatively large pre-trained neural network was the Bidirectional Encoder 14 
Representations f rom Transformers (BERT). BERT is pre-trained on a large volume of  text, and 15 
can be f ine-tuned for particular tasks. This model has been incorporated into human-AI hybrid 16 
evidence synthesis teams (62). The collaborative screening process involves subject matter 17 
experts identifying the screening criteria, followed by the training of  the NLP using a limited 18 
number of  studies screened by subject matter experts. Once the model is judged to function 19 
adequately, it ranks new documents never seen by the model (62). A f inal review of  all selected 20 
documents is conducted by experts. The approach is iterative as feedback f rom the experts 21 
continuously constrains and improves the model. The approach may incorporate active learning 22 
into the human-AI hybrid team by exploring and testing dif ferent sampling strategies, including 23 
random sampling, least conf idence sampling, and highest priority sampling, and evaluating their 24 
ef fectiveness on the collaborative screening process.  25 

Incorporating the BERT-based AI agent into a human team was found to reduce the human 26 
screening ef fort, including the number of  documents that humans need to read, by 68.5% 27 
compared to the case of  no AI assistance, and by 16.8% compared to the industry standard that 28 
uses a f requency-based language model and a support vector machine-based classif ier (Figure 29 
3). These values are for the human screening ef fort required to identify 80% of  all relevant 30 
documents. The process was further improved by applying a HP sampling strategy to the human 31 
screening ef fort, resulting in 78.3% reduction in human screening ef fort to identify 80% of  all 32 
relevant documents compared to no AI assistance. The BERT-based model uniformly 33 
outperformed the industry standard NLPs in classif ication performance.  34 

Key limitations to using active learning-enhanced human-AI hybrid team workf low process are the 35 
time of  communication among subject matter experts and computational scientists, the level of  36 
measurement error inherent to human labels, which is addressed with additional iterative training, 37 
and trust among the experts and the model. Future expansion to full text screening is expected to 38 
improve classif ication performance but can be limited by inaccessible documents that are not 39 
published in open-access format. It is important to note that the f ield of  LLMs is changing rapidly 40 
and becoming more powerful with generative models which could improve accuracy and be able 41 
to summarize evidence but will require validation. 42 

Extracting and synthesizing medical evidence with LLMs. Clinical trial results are disseminated 43 
through natural language articles and hence are largely unstructured or semi-structured, including 44 
clinical trial databases such as clinicaltrials.gov. NLP methods in general, and automated 45 
summarization in particular, of fer a potential means of  helping domain experts identify and make 46 
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better use of  the totality of  scientif ic data to inform treatment and other-related decisions. Variants 1 
of  LLMs are being used to extract and structure f indings f rom clinical trial reports, and to generate 2 
automatic summaries of  all published evidence pertaining to a particular clinical question. An 3 
available prototype, Trialstreamer, is a publicly available living repository of  all articles describing 4 
RCTs in humans that makes RCT data fully computable (64, 67) (Figure 4). It monitors PubMed 5 
and other sources daily, then structures the data using models that extract and tabulate key 6 
information including PICO (Population, Intervention, Comparison, Outcome) element information 7 
and other metrics such as sample sizes. Trialstreamer can conduct aspects of  Cochrane-style 8 
risk of  bias assessments, such as whether a trial was randomized or blinded, which otherwise 9 
involves subjective judgements by humans. Trialstreamer can infer main f indings of  a study 10 
through a semi-automated process that accelerates human assessment by about 30% (68), and 11 
the results are generally in agreement with human assessments. The database can be searched 12 
for all studies relevant to a well-formed clinical question if  indexed by PubMed (emerging pre-13 
publication websites, by lack of  per-review, are not incorporated).  14 

In development for the next iteration of  Trialstreamer is the capability to generate Cochrane-style 15 
systematic reviews, including meta-analyses, and a natural language narrative that describes the 16 
summary of  results. Current technologies permit automatic generation of  plausible summaries but 17 
may, or even of ten, include “hallucinations” in the conclusions which is a real problem that needs 18 
to be addressed to ensure “trustworthy” information. Other limitations pertain to the assessment 19 
of  more nuanced information f rom studies, such as extraction and critical appraisal of  intervention 20 
and outcome ascertainment methods given the discipline- and method-specif ic nature of  this kind 21 
of  data.  22 

Key performance indicators for AI-assisted evidence synthesis. Looking forward, automated 23 
evidence synthesis products must be f it for purpose, and the evidence synthesis processes 24 
should be robust a predictably changing environment (e.g., the increasing rate at which primary 25 
research is published) and rapidly responsive to unpredictable shocks (e.g., health emergencies 26 
such as the COVID-19 pandemic). This will require new tools and processes, but should also 27 
build upon an understanding of  three key performance indicators (KPIs): 1) time use and time to 28 
completion; 2) resource use and economic sustainability, and 3) correctness (69, 70). Shaping 29 
the future of  evidence synthesis, both technologically and culturally, is essential to ensure that it 30 
continues to meet stakeholder needs. 31 

The three KPIs have been assessed in a limited number of  cases. A study by Tercero-Hidalgo 32 
examined the inf luence of  using AI in the systematic review process related to COVID -19 (71). 33 
The prespecif ied study included 3,999 systematic reviews, 28 of  which used AI. The use of  AI 34 
was associated with publication in journals with a higher impact factor (8.9 vs. 3.5), more 35 
abstracts screened per author (302 vs. 140) and fewer texts screened per author (5.3 vs. 14 full 36 
texts) but curiously no ef fect on time to completion. In another prespecif ied study, Meneses -37 
Echavez et al. examined the KPIs person hours and time-to completion prior to and following 38 
adoption of  ML in the systematic review process f rom August 2020 to January 2023 at the 39 
Norwegian Institute of Public Health (70). This study also found using ML required more person-40 
hours and other resources, with no ef fect on time to completion.  41 

The third KPI, correctness, is the most dif f icult to assess, but could be evaluated by: 1) comparing 42 
AI outputs to human reviewers, who are assumed to be making correct decisions; 2) comparing 43 
AI outputs to results such as meta-analytical estimates f rom closed reviews under the assumption 44 
that f indings in closed reviews are suf f iciently close to the truth (reviews are closed if  adding 45 
additional studies is expected not to change the existing f indings); and 3) a simulation approach 46 
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in which AI tools for evidence synthesis are applied to bodies of  literature using computed data, 1 
generated using models such as LLMs, where the true values of  ef fect measures such as hazard 2 
ratios are known by construction, facilitating comparison of  AI outputs with known ground truth.  3 
To date, only the f irst approach has been used for analyses, and is biased by the assumption that 4 
human reviewers are correct when in reality they can introduce inconsistency due to human 5 
judgement. Vembye and Dietrichson (unpublished data) compared the performance of  non-expert 6 
reviewers (students) compared to the GPT-4 model for title and abstract screening using results 7 
of  a literature search that yielded 4,136 articles. The GTP-4 model achieved 90% sensitivity and 8 
94% specif icity, and where nonexpert humans and the LLM disagreed, subject matter expert 9 
humans generally agreed with the LLM.  10 

Looking forward, there are many limitations of  AI approaches that must be overcome to achieve 11 
correctness. It is recognized that there is a trade-of f  between accuracy and conf idence with time 12 
savings and ef f iciency when automating evidence synthesis. Understanding what type of  13 
scientif ic product is needed for a particular purpose (e.g. guideline development) where the need 14 
for comprehensiveness and accuracy versus expediency can be pre-specif ied and reported 15 
transparently, otherwise cheap, fast, and possibly incorrect evidence synthesis may result.  16 

AI tools may also be abused to quickly produce poor-quality “reviews”, which poses new threats 17 
to evidence synthesis. LLMs may also facilitate the production of  fake, f raudulent, or f lawed 18 
primary studies (e.g., zombie trials). It is estimated that hundreds of  thousands of  zombie trials 19 
already circulate in the literature, and their inclusion in evidence syntheses is problematic (72). 20 
Furthermore, online AI tools are vulnerable to digital attack including denial-of -service attacks and 21 
data set poisoning (73). Other concerns include privacy violations, underrepresentation of  studies 22 
in minority languages, and the commercial interests of  companies marketing AI tools out of  23 
alignment with stakeholder needs. 24 

Finally, AI tools are perhaps only necessary because scientif ic results are not reported using 25 
standardized structured data formats that permit accurate and comprehensive automated search 26 
and data extraction across the entire literature. While reports for some trials are available in 27 
machine-readable formats such as JSON and FHIR f rom clinicaltrials.gov, future work could 28 
focus on dramatically extending the coverage and depth of  scientif ic reporting, perhaps using 29 
f ine-grained and federated graph databases and standardized ontologies.  30 

Discussion 31 

Advances in AI are providing decision makers new ways of  accessing and making sense of  32 
scientif ic evidence. Although AI tools alone cannot generate evidence de novo, they are capable 33 
of  processing, daisy-chaining and/or merging evidence across existing datasets into new formats. 34 
They have been used to create synthetic dose-response relationships drawing on pathway data 35 
f rom dif ferent data sets, which have aided authoritative organizations in setting food and nutrition 36 
policy (74, 75). However, the trustworthiness of  computed data, including information f rom VNN 37 
and knowledge graphs, and its relative positioning in the hierarchy of  evidence has not been 38 
addressed (76).  39 

The established evidence hierarchy describes the strength of  data types based on study design 40 
as they relate to causal inference. As one moves up the hierarchy it is assumed that study quality 41 
increases and risk of  bias decreases, and thereby the certainty of  relationships between 42 
interventions/exposures and outcomes is higher (76). Well-designed Randomized Controlled 43 
Trials, which sit at the top of  the hierarchy, can determine causal relationships. As such, 44 
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systematic reviews, and meta-analyses of  these trials are considered the highest level of  1 
evidence (76). However, like traditional Randomized Controlled Trial designs, systematic reviews 2 
and meta-analyses generally emphasize average responses across many studies, and of ten fail 3 
to consider variation in response between studies or individuals (77). VNNs and knowledge 4 
graphs provide the opportunity to address overall ef fects of  an intervention, as well as address 5 
variation in response among individuals, but their potential to determine causality has not been 6 
established (78), nor has there been consideration to how computed evidence compares to other 7 
traditional types of  evidence. The quality of  AI-assisted SR is also dependent on the body of  8 
literature available. 9 

Limitations to the established hierarchy-of -evidence include uncertain generalizability of  the 10 
f indings, even when the evidence for causation is strong. The lack of  generalizability is rooted in 11 
biological heterogeneity within populations that contributes to variance in the exposure-outcome 12 
relationship. Likewise, social, environmental, and other contexts in f ree-living populations can 13 
inf luence ef f icacy and ef fectiveness of  interventions or exposures. These ef fects on context limit 14 
the ability to predict nutrition intervention outcomes in low- and middle-income countries based on 15 
relationships and contexts established in high income countries. Furthermore, the strength of  16 
evidence does not always inform whether interventions will have a meaningful magnitude of  effect 17 
that has a clinical and public health value even when causal inference is strong. Knowledge 18 
graphs consider the many biological and social dimensions of  food, individuals and health.Their 19 
application to nutrition questions, especially when combined with LLMs, presents an exciting and 20 
transformational opportunity to connect food and health in a way that considers individuals and 21 
their contexts.  22 

Ideally, computed data will lead to multiple new types of  evidence that will be available to 23 
decisionmakers, yet f rameworks and appraisal tools do not exist to guide their use. Rather than a 24 
single hierarchy, there is an increasing need for a multi-dimensional assessment of  the totality of  25 
the evidence that is f it for purpose, considers the properties of  the evidence and how the 26 
outcomes are af fected in multidimensional situations. Such a f ramework should consider and 27 
potentially rank the properties of  dif ferent forms of  scientif ic evidence including causality, 28 
generalizability, risk of  bias, precision, dose-response, and magnitude of  ef fect, and their relative 29 
importance for dif ferent purposes. 30 

Decisionmakers emphasize the need to accelerate the synthesis of  scientif ic data in response to 31 
emergent and sustained societal needs. This includes outcomes of  ef f icacy, ef fectiveness, and 32 
equity across a population. Understanding the generalizability of  even the strongest scientif ic 33 
evidence is also essential, as many policy decisions are made locally and include contextual 34 
realities in which research and policy making is done. Automating the SR process and 35 
incorporating computed evidence can address many of  these concerns. For example, elements of  36 
equity can be improved by including data reported in underrepresented languages, which are 37 
of ten excluded, through LLMs.  38 

In the ideal case, automated real-time collection and analyses of  data of  high relevance to clinical 39 
and public health f rom all sources is the goal. This will allow more rapid science-informed policies 40 
and create a continuously learning health system. Learning systems characterized by automated 41 
real-time collection and analyses of  data in nutrition could facilitate regular updates to both the 42 
DGAs and DRIs as new data become available through a semi-automated process that includes 43 
expert input and review (79). 44 
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AI can also inform future research priorities. AI approaches can assist research funding agencies 1 
in identifying gaps in knowledge (identify holes or uncertainty in networks) in real time to guide 2 
and prioritize high impact research needs that have a high societal return on investment, 3 
especially concerning both continuing and emerging public health threats, including setting 4 
priorities for the Dietary Guidelines for Americans. 5 

Trust in food and nutrition research is essential, otherwise science-informed guidance and 6 
recommendations will not achieve or will diminish the impact of  their intended health outcomes 7 
(80). The inclusion of  validated and reliable data science tools into the process of  food and 8 
nutrition research, and its translation for public benef it, of fers the opportunity to increase public 9 
trust. This will be challenging as current LLMs and other tools are essentially “black boxes”; no 10 
one knows exactly how they work, or when they will “hallucinate” rather than provide correct 11 
information. While this may be less of  a concern when these technologies are used in an 12 
analytical mode to screen, identify, or extract straightforward evidence during semiautomated 13 
evidence synthesis, applications of  the technology that generate computed evidence will have to 14 
be carefully validated, replicated, and communicated transparently. On the other hand, data 15 
science tools of fer the potential for more personalized nutrition guidance where individuals can 16 
access the science and realize the benef it, as opposed to generalized recommendations that may 17 
not be optimal for everyone. These tools also of fer the opportunity to reduce bias in nutrition. 18 
While data f rom individuals of  European ancestry is overrepresented relative to US demographics 19 
in many health-related databases, AI tools such as digital twin approaches may allow us to 20 
minimize or eliminate biases and data misalignments by moving away f rom population averages 21 
that might poorly ref lect underrepresented individuals and towards causal inferences and 22 
predictions that address the unique characteristics of  individuals.  23 

Finally, meaningful advances in the application of  AI to nutrition research, policy and practice will 24 
require the inclusion of  more, consistently collected, richer nutrition and diet data in EMRs, 25 
greater engagement of  data scientists with nutrition scientists, and ensuring the next generation 26 
of  nutrition scientists are trained in the data sciences.  27 
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Figure Legends:  1 
 2 
 3 
Figure 1. Visible neural network (VNN). Adapted f rom Park, Silva, Singhal, et al. (29). 4 
The f irst layer of  the VNN incorporates gene-level features, including gene mutations, copy 5 
number amplif ications (CNA), and copy number deletions (CND). Subsequent assembly layers 6 
aggregate gene-level features into assembly-level information, guided by the hierarchical 7 
relationships def ined by a map of  protein assemblies. The output state of  each gene (g) and 8 
assembly (O) is represented by artif icial neurons (one neuron per gene, multiple neurons per 9 
assembly). Each node in the hierarchy indicates a protein assembly. An example path of  10 
information f low is shown in red.   11 
 12 
Figure 2. Scalable Precision Medicine Open Knowledge Engine (SPOKE). The SPOKE 13 
biomedical knowledge graph draws upon and integrates over 45 databases . 14 
 15 
Figure 3. A human-AI workf low for document screening in evidence synthesis. In Stage 1, 16 
experts specify screening criteria for documents, then screen a subset of  the documents -of -17 
interest for inclusion or exclusion in an evidence synthesis product. In Stage 2, an AI model is 18 
trained on the expert labels of  screened documents, and then performs screening of  additional 19 
documents. In Stage 3, expert labellers evaluate the AI’s screening decisions. The f inal validated 20 
screening decisions are used to iteratively re-train the AI model. 21 
 22 
Figure 4. Trialstreamer: A living automated automatically updated database of  clinical trial reports 23 
(67).  24 
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Figure 1 2 
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Figure 2 6 
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